Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Restor Neurol Neurosci ; 37(2): 167-180, 2019.
Article in English | MEDLINE | ID: mdl-30932903

ABSTRACT

BACKGROUND: Intensive robot-assisted arm training in the chronic phase of stroke recovery can lead to clinical improvement. Combinatorial therapeutic approaches are sought to further optimize stroke recovery. Transcranial direct current stimulation (tDCS) is one candidate to combine with robotic training, as transient increases in excitability and improvements in motor behavior have separately been reported. OBJECTIVE: To determine whether tDCS, delivered prior to robotic training, could augment clinical improvement. METHODS: We conducted a dual-site, randomized controlled trial in 82 chronic ischemic stroke patients (inclusion > 6 m post-injury, dominant hemisphere, first stroke; residual hemiparesis) who were split into two groups to receive tDCS (M1-SO montage, anode ipsilesional, 5×7 cm electrodes, 2 mA, 20 mins) or sham tDCS, prior to robotic upper-limb training (12 weeks; 36 sessions; shoulder-elbow robot or wrist robot on alternating sessions). The primary end-point was taken after 12 weeks of training, and assessed with the Upper Extremity Fugl-Meyer impairment scale (FM). Corticomotor conduction was assessed with transcranial magnetic stimulation (TMS). RESULTS: For the combined group (n = 82; post-training) robotic training increased the FM by 7.36 points compared to baseline (p < 0.0001). There was no difference in the FM increase between the tDCS and sham groups (6.97 and 7.73 respectively, p = 0.46). In both groups, clinically meaningful improvement (≥5 points) from baseline was evident in the majority of patients (56/77), was sustained six months later (54/72), and could be attained in severe, moderate and mild baseline hemiparesis. Clinical improvement was associated with increased excitability in the affected hemisphere as assessed by resting motor threshold (pre-post p = 0.029; pre-post 6 months p = 0.029), but not with threshold-adjusted assessment of MEP amplitude (pre-post p = 0.09; pre-post 6 months p = 0.15). Participants with motor evoked potentials were more likely to improve clinically than those without (17/18, 94%, versus 39/59, 66%, p = 0.018). CONCLUSIONS: Our study confirms the benefit of intensive robot-assisted training in stroke recovery, and indicates that conventional tDCS does not confer further advantage to robotic training. We also showed that corticospinal integrity, as assessed by TMS, is a predictor of clinically meaningful response to intensive arm therapy in chronic stroke.


Subject(s)
Stroke Rehabilitation , Therapy, Computer-Assisted , Transcranial Direct Current Stimulation , Adult , Aged , Aged, 80 and over , Arm/physiopathology , Brain Ischemia/physiopathology , Brain Ischemia/rehabilitation , Chronic Disease , Double-Blind Method , Evoked Potentials, Motor , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pyramidal Tracts/physiopathology , Robotics , Stroke/physiopathology , Treatment Outcome
2.
Front Neurol ; 9: 853, 2018.
Article in English | MEDLINE | ID: mdl-30405512

ABSTRACT

Objective: This study aimed to determine the extent to which robotic arm rehabilitation for chronic stroke may promote recovery of speech and language function in individuals with aphasia. Methods: We prospectively enrolled 17 individuals from a hemiparesis rehabilitation study pairing intensive robot assisted therapy with sham or active tDCS and evaluated their speech (N = 17) and language (N = 9) performance before and after a 12-week (36 session) treatment regimen. Performance changes were evaluated with paired t-tests comparing pre- and post-test measures. There was no speech therapy included in the treatment protocol. Results: Overall, the individuals significantly improved on measures of motor speech production from pre-test to post-test. Of the subset who performed language testing (N = 9), overall aphasia severity on a standardized aphasia battery improved from pre-test baseline to post-test. Active tDCS was not associated with greater gains than sham tDCS. Conclusions: This work indicates the importance of considering approaches to stroke rehabilitation across different domains of impairment, and warrants additional exploration of the possibility that robotic arm motor treatment may enhance rehabilitation for speech and language outcomes. Further investigation into the role of tDCS in the relationship of limb and speech/language rehabilitation is required, as active tDCS did not increase improvements over sham tDCS.

SELECTION OF CITATIONS
SEARCH DETAIL
...