Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Res ; 164(3): 244-57, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24924347

ABSTRACT

Subfailure matrix injuries such as sprains and strains account for a considerable portion of ligament and tendon pathologies. In addition to the lack of a robust biological healing response, these types of injuries are often characterized by seriously diminished matrix biomechanics. Recent work has shown nanosized particles, such as nanocarbons and nanocellulose, to be effective in modulating cell and biological matrix responses for biomedical applications. In this article, we investigate the feasibility and effect of using high stiffness nanostructures of varying size and shape as nanofillers to mechanically reinforce damaged soft tissue matrices. To this end, nanoparticles (NPs) were characterized using atomic force microscopy and dynamic light scattering techniques. Next, we used a uniaxial tensile injury model to test connective tissue (porcine skin and tendon) biomechanical response to NP injections. After injection into damaged skin and tendon specimens, the NPs, more notably nanocarbons in skin, led to an increase in elastic moduli and yield strength. Furthermore, rat primary patella tendon fibroblast cell activity evaluated using the metabolic water soluble tetrazolium salt assay showed no cytotoxicity of the NPs studied, instead after 21 days nanocellulose-treated tenocytes exhibited significantly higher cell activity when compared with nontreated control tenocytes. Dispersion of nanocarbons injected by solution into tendon tissue was investigated through histologic studies, revealing effective dispersion and infiltration in the treated region. Such results suggest that these high modulus NPs could be used as a tool for damaged connective tissue repair.


Subject(s)
Extracellular Matrix/pathology , Nanoparticles , Patellar Ligament/pathology , Animals , Biocompatible Materials , In Vitro Techniques , Male , Microscopy, Atomic Force , Rats , Rats, Sprague-Dawley , Swine
2.
Int J Hyperthermia ; 29(4): 281-95, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23738696

ABSTRACT

PURPOSE: Predictions of injury in response to photothermal therapy in vivo are frequently made using Arrhenius parameters obtained from cell monolayers exposed to laser or water bath heating. However, the impact of different heating methods and cellular microenvironments on Arrhenius predictions has not been thoroughly investigated. This study determined the influence of heating method (water bath and laser irradiation) and cellular microenvironment (cell monolayers and tissue phantoms) on Arrhenius parameters and spatial viability. METHODS: MDA-MB-231 cells seeded in monolayers and sodium alginate phantoms were heated with a water bath for 3-20 min at 46, 50, and 54 °C or laser irradiated (wavelength of 1064 nm and fluences of 40 W/cm(2) or 3.8 W/cm(2) for 0-4 min) in combination with photoabsorptive carbon nanohorns. Spatial viability was measured using digital image analysis of cells stained with calcein AM and propidium iodide and used to determine Arrhenius parameters. The influence of microenvironment and heating method on Arrhenius parameters and capability of parameters derived from more simplistic experimental conditions (e.g. water bath heating of monolayers) to predict more physiologically relevant systems (e.g. laser heating of phantoms) were assessed. RESULTS: Arrhenius predictions of the treated area (<1% viable) under-predicted the measured areas in photothermally treated phantoms by 23 mm(2) using water bath treated cell monolayer parameters, 26 mm(2) using water bath treated phantom parameters, 27 mm(2) using photothermally treated monolayer parameters, and 0.7 mm(2) using photothermally treated phantom parameters. CONCLUSIONS: Heating method and cellular microenvironment influenced Arrhenius parameters, with heating method having the greater impact.


Subject(s)
Hyperthermia, Induced/methods , Models, Biological , Cell Line, Tumor , Cell Survival , Cellular Microenvironment , Hot Temperature , Humans , Hyperthermia, Induced/adverse effects , Lasers , Software , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...