Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Med Chem ; 61(7): 3027-3036, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29498519

ABSTRACT

Here, we have identified the interaction site of the contraceptive drug gamendazole using computational modeling. The drug was previously described as a ligand for eukaryotic translation elongation factor 1-α 1 (eEF1A1) and found to be a potential target site for derivatives of 2-phenyl-3-hydroxy-4(1 H)-quinolinones (3-HQs), which exhibit anticancer activity. The interaction of this class of derivatives of 3-HQs with eEF1A1 inside cancer cells was confirmed via pull-down assay. We designed and synthesized a new family of 3-HQs and subsequently applied isothermal titration calorimetry to show that these compounds strongly bind to eEF1A1. Further, we found that some of these derivatives possess significant in vitro anticancer activity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Indazoles/metabolism , Peptide Elongation Factor 1/drug effects , Quinolones/chemical synthesis , Quinolones/pharmacology , Binding Sites/drug effects , Cell Line, Tumor , Computational Biology , Humans , Ligands , Models, Molecular , Molecular Conformation , Peptide Elongation Factor 1/biosynthesis , Structure-Activity Relationship
3.
J Proteomics ; 162: 73-85, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28478306

ABSTRACT

Oxaliplatin is widely used to treat colorectal cancer in both palliative and adjuvant settings. It is also being tested for use in treating hematological, esophageal, biliary tract, pancreatic, gastric, and hepatocellular cancers. Despite its routine clinical use, little is known about the responses it induces in cancer cells. Therefore the whole-cell proteomics study was conducted to characterize the cellular response induced by oxaliplatin. Chemosensitive CCRF-CEM cells were treated with oxaliplatin at 29.3µM (5×IC50) for 240min (half-time to caspase activation). The proteomes of un-/treated cells were then compared by high-resolution mass spectrometry, revealing 4049 proteins expressed over 3 biological replicates. Among these proteins, 76 were significantly downregulated and 31 significantly upregulated in at least two replicates. In agreement with the DNA-damaging effects of platinum drugs, proteins involved in DNA damage responses were present in both the upregulated and downregulated groups. The downregulated proteins were divided into three subgroups; i) centrosomal proteins, ii) RNA processing and iii) ribosomal proteins, which indicates nucleolar and ribosomal stress. In conclusion, our data supported by further validation experiments indicate the initial cellular response to oxaliplatin is the activation of DNA damage response, which in turn or in parallel triggers nucleolar and ribosomal stress. BIOLOGICAL SIGNIFICANCE: We have performed a whole-cell proteomic study of cellular response to oxaliplatin treatment, which is the drug predominantly used in the treatment of colorectal cancer. Compared to its predecessors, cisplatin and carboplatin, there is only a small fraction of studies dedicated to oxaliplatin. From those studies, most of them are focused on modification of treatment regimens or study of oxaliplatin in new cancer diagnoses. Cellular response hasn't been studied deeply and to our best knowledge, this is the first whole-cell proteomics study focused exclusively to this important topic, which can help to understand molecular mechanisms of action.


Subject(s)
Cell Nucleolus/drug effects , DNA Damage , Neoplasms/drug therapy , Organoplatinum Compounds/pharmacology , Proteome/drug effects , Ribosomes/drug effects , Antineoplastic Agents/pharmacology , Gene Expression Profiling , Humans , Neoplasms/pathology , Oxaliplatin , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Stress, Physiological , Tumor Cells, Cultured
4.
Mol Cancer Ther ; 15(5): 922-37, 2016 05.
Article in English | MEDLINE | ID: mdl-26819331

ABSTRACT

7-(2-Thienyl)-7-deazaadenosine (AB61) showed nanomolar cytotoxic activities against various cancer cell lines but only mild (micromolar) activities against normal fibroblasts. The selectivity of AB61 was found to be due to inefficient phosphorylation of AB61 in normal fibroblasts. The phosphorylation of AB61 in the leukemic CCRF-CEM cell line proceeds well and it was shown that AB61 is incorporated into both DNA and RNA, preferentially as a ribonucleotide. It was further confirmed that a triphosphate of AB61 is a substrate for both RNA and DNA polymerases in enzymatic assays. Gene expression analysis suggests that AB61 affects DNA damage pathways and protein translation/folding machinery. Indeed, formation of large 53BP1 foci was observed in nuclei of AB61-treated U2OS-GFP-53BP1 cells indicating DNA damage. Random incorporation of AB61 into RNA blocked its translation in an in vitro assay and reduction of reporter protein expression was also observed in mice after 4-hour treatment with AB61. AB61 also significantly reduced tumor volume in mice bearing SK-OV-3, BT-549, and HT-29 xenografts. The results indicate that AB61 is a promising compound with unique mechanism of action and deserves further development as an anticancer agent. Mol Cancer Ther; 15(5); 922-37. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Tubercidin/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , DNA/genetics , DNA/metabolism , DNA Damage/drug effects , Disease Models, Animal , Fibroblasts , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Biosynthesis/drug effects , Protein Folding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival Analysis , Treatment Outcome , Tubercidin/analogs & derivatives , Tubercidin/chemistry , Tubercidin/metabolism , Xenograft Model Antitumor Assays
5.
Curr Drug Targets ; 16(1): 60-76, 2015.
Article in English | MEDLINE | ID: mdl-25410410

ABSTRACT

Target discovery using the molecular approach, as opposed to the more traditional systems approach requires the study of the cellular or biological process underlying a condition or disease. The approaches that are employed by the "bench" scientist may be genetic, genomic or proteomic and each has its rightful place in the drug-target discovery process. Affinity-based proteomic techniques currently used in drug-discovery draw upon several disciplines, synthetic chemistry, cell-biology, biochemistry and mass spectrometry. An important component of such techniques is the probe that is specifically designed to pick out a protein or set of proteins from amongst the varied thousands in a cell lysate. A second component, that is just as important, is liquid-chromatography tandem massspectrometry (LC-MS/MS). LC-MS/MS and the supporting theoretical framework has come of age and is the tool of choice for protein identification and quantification. These proteomic tools are critical to maintaining the drug-candidate supply, in the larger context of drug discovery.


Subject(s)
Drug Discovery/methods , Proteomics/methods , Chromatography, Liquid/methods , Humans , Proteins/chemistry , Proteins/metabolism , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...