Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Hum Brain Mapp ; 45(7): e26699, 2024 May.
Article in English | MEDLINE | ID: mdl-38726907

ABSTRACT

With the steadily increasing abundance of longitudinal neuroimaging studies with large sample sizes and multiple repeated measures, questions arise regarding the appropriate modeling of variance and covariance. The current study examined the influence of standard classes of variance-covariance structures in linear mixed effects (LME) modeling of fMRI data from patients with pediatric mild traumatic brain injury (pmTBI; N = 181) and healthy controls (N = 162). During two visits, participants performed a cognitive control fMRI paradigm that compared congruent and incongruent stimuli. The hemodynamic response function was parsed into peak and late peak phases. Data were analyzed with a 4-way (GROUP×VISIT×CONGRUENCY×PHASE) LME using AFNI's 3dLME and compound symmetry (CS), autoregressive process of order 1 (AR1), and unstructured (UN) variance-covariance matrices. Voxel-wise results dramatically varied both within the cognitive control network (UN>CS for CONGRUENCY effect) and broader brain regions (CS>UN for GROUP:VISIT) depending on the variance-covariance matrix that was selected. Additional testing indicated that both model fit and estimated standard error were superior for the UN matrix, likely as a result of the modeling of individual terms. In summary, current findings suggest that the interpretation of results from complex designs is highly dependent on the selection of the variance-covariance structure using LME modeling.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Adolescent , Child , Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Linear Models , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Executive Function/physiology
2.
J Cereb Blood Flow Metab ; : 271678X241241895, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578669

ABSTRACT

A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.

3.
Hum Brain Mapp ; 45(1): e26544, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041476

ABSTRACT

Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.


Subject(s)
Melanins , Parkinson Disease , Humans , Parkinson Disease/pathology , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Biomarkers/metabolism , Substantia Nigra/metabolism
4.
Neuroimage ; 285: 120470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016527

ABSTRACT

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Subject(s)
Brain Concussion , Brain Injuries , Humans , Child , Brain Concussion/diagnostic imaging , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging
5.
J Cereb Blood Flow Metab ; 44(1): 118-130, 2024 01.
Article in English | MEDLINE | ID: mdl-37724718

ABSTRACT

Dynamic changes in neurodevelopment and cognitive functioning occur during adolescence, including a switch from reactive to more proactive forms of cognitive control, including response inhibition. Pediatric mild traumatic brain injury (pmTBI) affects these cognitions immediately post-injury, but the role of vascular versus neural injury in cognitive dysfunction remains debated. This study consecutively recruited 214 sub-acute pmTBI (8-18 years) and age/sex-matched healthy controls (HC; N = 186), with high retention rates (>80%) at four months post-injury. Multimodal imaging (functional MRI during response inhibition, cerebral blood flow and cerebrovascular reactivity) assessed for pathologies within the neurovascular unit. Patients exhibited increased errors of commission and hypoactivation of motor circuitry during processing of probes. Evidence of increased/delayed cerebrovascular reactivity within motor circuitry during hypercapnia was present along with normal perfusion. Neither age-at-injury nor post-concussive symptom load were strongly associated with imaging abnormalities. Collectively, mild cognitive impairments and clinical symptoms may continue up to four months post-injury. Prolonged dysfunction within the neurovascular unit was observed during proactive response inhibition, with preliminary evidence that neural and pure vascular trauma are statistically independent. These findings suggest pmTBI is characterized by multifaceted pathologies during the sub-acute injury stage that persist several months post-injury.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Cognitive Dysfunction , Post-Concussion Syndrome , Adolescent , Humans , Child , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognition , Cerebrovascular Circulation/physiology , Brain/pathology , Brain Injuries, Traumatic/pathology
6.
Front Neurosci ; 17: 1232480, 2023.
Article in English | MEDLINE | ID: mdl-37841680

ABSTRACT

Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.

7.
Hum Brain Mapp ; 44(17): 6173-6184, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37800467

ABSTRACT

There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.


Subject(s)
Brain Concussion , Cognition Disorders , Cognitive Dysfunction , Humans , Child , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Cognition Disorders/etiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Magnetic Resonance Imaging , Cognition
8.
Mov Disord ; 38(7): 1262-1272, 2023 07.
Article in English | MEDLINE | ID: mdl-37157056

ABSTRACT

BACKGROUND: Cerebrovascular dysfunction in Parkinson's disease (PD) is heterogeneous and may contribute to disease pathophysiology or progression. There is a need to understand the mechanisms by which cerebrovascular dysfunction is altered in participants with PD. OBJECTIVES: The objective of this study is to test the hypothesis that participants with PD exhibit a significant reduction in the ability of the cerebral vessels to dilate in response to vasoactive challenges relative to healthy controls (HC). METHODS: The current study uses a vasodilatory challenge while participants undergo functional magnetic resonance imaging to quantify the amplitude and delay of cerebrovascular reactivity in participants with PD relative to age and sex-matched HC. An analysis of covariance was used to evaluate differences in cerebrovascular reactivity amplitude and latency between PD participants and HC. RESULTS: A significant main effect of group was observed for whole-brain cerebrovascular reactivity amplitude (F(1, 28) = 4.38, p = 0.046, Hedge's g = 0.73) and latency (F(1, 28) = 16.35, p < 0.001, Hedge's g = 1.42). Participants with PD exhibited reduced whole-brain amplitude and increased latencies in cerebrovascular reactivity relative to HC. The evaluation of regional effects indicates that the largest effects were observed in the cuneus, precuneus, and parietal regions. CONCLUSIONS: PD participants exhibited reduced and delayed cerebrovascular reactivity. This dysfunction may play an important role in chronic hypoxia, neuroinflammation, and protein aggregation, mechanisms that could lead to disease progression. Cerebrovascular reactivity may serve as an important biomarker and target for future interventions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Brain/pathology , Magnetic Resonance Imaging/methods , Occipital Lobe , Parietal Lobe
9.
eNeurologicalSci ; 29: 100438, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36483475

ABSTRACT

Background: Elevated urine albumin to creatinine ratio (UACR) is associated with cerebrovascular disease and cognitive impairment in older adults, though few studies have evaluated these relationships in midlife. This is particularly important to assess in American Indian populations, which are disproportionately impacted by diabetes and kidney disease. Additionally, evidence suggests that biomarkers may perform differently in underrepresented groups, thus, it is crucial to validate biomarkers in this unique population. Methods: Twenty-five participants from the Zuni Pueblo underwent neuropsychological assessment and an MRI that included fluid attenuated inversion recovery (FLAIR) and diffusion imaging to calculate recently developed MRI markers of cerebrovascular small vessel disease (Peak width of Skeletonized Mean Diffusivity (PSMD), mean free-water fraction (mFW), white matter hyperintensity (WMH)). Results: Regression analyses indicated no significant associations between UACR, MRI biomarkers and cognitive outcomes. Analyses of covariance indicated that the Zuni Indian cohort exhibited reduced white matter damage relative to an existing cohort of older adults with vascular cognitive impairment when accounting for age, sex, and education. Slower processing speed was associated with greater white matter disease across all measures examined. Conclusions: Our pilot study validated the use of MRI biomarkers of cerebrovascular disease in this unique cohort of American Indians.

10.
Front Aging Neurosci ; 13: 711579, 2021.
Article in English | MEDLINE | ID: mdl-34366830

ABSTRACT

Identifying biomarkers that can assess the risk of developing Alzheimer's Disease (AD) remains a significant challenge. In this study, we investigated the integrity levels of brain white matter in 34 patients with mild cognitive impairment (MCI) who later converted to AD and 53 stable MCI patients. We used diffusion tensor imaging (DTI) and automated fiber quantification to obtain the diffusion properties of 20 major white matter tracts. To identify which tracts and diffusion measures are most relevant to AD conversion, we used support vector machines (SVMs) to classify the AD conversion and non-conversion MCI patients based on the diffusion properties of each tract individually. We found that diffusivity measures from seven white matter tracts were predictive of AD conversion with axial diffusivity being the most predictive diffusion measure. Additional analyses revealed that white matter changes in the central and parahippocampal terminal regions of the right cingulate hippocampal bundle, central regions of the right inferior frontal occipital fasciculus, and posterior and anterior regions of the left inferior longitudinal fasciculus were the best predictors of conversion from MCI to AD. An SVM based on these white matter tract regions achieved an accuracy of 0.75. These findings provide additional potential biomarkers of AD risk in MCI patients.

11.
J Alzheimers Dis ; 80(3): 1243-1256, 2021.
Article in English | MEDLINE | ID: mdl-33646154

ABSTRACT

BACKGROUND: Alzheimer's disease neuropathologic change (ADNC) may contribute to dementia in patients with Lewy body disease (LBD) pathology. OBJECTIVE: To examine how co-occurring ADNC impacts domain specific cognitive impairments at each pathologic stage (brainstem, limbic, cerebral cortical) of LBD. METHODS: 2,433 participants with antemortem longitudinal neuropsychological assessment and postmortem neuropathological assessment from the National Alzheimer's Coordinating Center's Uniform Data Set were characterized based on the evaluation of ADNC and LBD. Longitudinal mixed-models were used to derive measures of cumulative cognitive deficit for each cognitive domain at each pathologic stage of LBD (brainstem, limbic, and cerebral cortical). RESULTS: 111 participants with a pathologic diagnosis of LBD, 741 participants with combined LBD and ADNC, 1,357 participants with ADNC only, and 224 with no pathology (healthy controls) were included in the analyses. In the executive/visuospatial domain, combined LBD and ADNC showed worse deficits than LBD only when Lewy bodies were confined to the brainstem, but no difference when Lewy bodies extended to the limbic or cerebral cortical regions. The cerebral cortical LBD only group exhibited greater executive/visuospatial deficits than the ADNC only group. By contrast, the ADNC only group and the combined pathology group both demonstrated significantly greater cumulative memory deficits relative to Lewy body disease only, regardless of stage. CONCLUSION: The impact of co-occurring ADNC on antemortem cumulative cognitive deficits varies not only by domain but also on the pathological stage of Lewy bodies. Our findings stress the cognitive impact of different patterns of neuropathological progression in Lewy body diseases.


Subject(s)
Alzheimer Disease/complications , Cognitive Dysfunction/etiology , Lewy Body Disease/complications , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Brain/pathology , Cognitive Dysfunction/pathology , Female , Humans , Lewy Body Disease/pathology , Male
12.
Schizophr Res ; 229: 12-21, 2021 03.
Article in English | MEDLINE | ID: mdl-33607607

ABSTRACT

Patients with psychotic spectrum disorders (PSD) exhibit similar patterns of atrophy and microstructural changes that may be associated with common symptomatology (e.g., symptom burden and/or cognitive impairment). Gray matter concentration values (proxy for atrophy), fractional anisotropy (FA), mean diffusivity (MD), intracellular neurite density (Vic) and isotropic diffusion volume (Viso) measures were therefore compared in 150 PSD (schizophrenia, schizoaffective disorder, and bipolar disorder Type I) and 63 healthy controls (HC). Additional analyses evaluated whether regions showing atrophy and/or microstructure abnormalities were better explained by DSM diagnoses, symptom burden or cognitive dysfunction. PSD exhibited increased atrophy within bilateral medial temporal lobes and subcortical structures. Gray matter along the left lateral sulcus showed evidence of increased atrophy and MD. Increased MD was also observed in homotopic fronto-temporal regions, suggesting it may serve as a precursor to atrophic changes. Global cognitive dysfunction, rather than DSM diagnoses or psychotic symptom burden, was the best predictor of increased gray matter MD. Regions of decreased FA (i.e., left frontal gray and white matter) and Vic (i.e., frontal and temporal regions and along central sulcus) were also observed for PSD, but were neither spatially concurrent with atrophic regions nor associated with clinical symptoms. Evidence of expanding microstructural spaces in gray matter demonstrated the greatest spatial overlap with current and potentially future regions of atrophy, and was associated with cognitive deficits. These results suggest that this particular structural abnormality could potentially underlie global cognitive impairment that spans traditional diagnostic categories.


Subject(s)
Psychotic Disorders , White Matter , Atrophy , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , White Matter/diagnostic imaging , White Matter/pathology
14.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32869961

ABSTRACT

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Subject(s)
Executive Function/physiology , Functional Neuroimaging/standards , Parietal Lobe/physiopathology , Prefrontal Cortex/physiopathology , Psychomotor Performance/physiology , Psychotic Disorders/physiopathology , Sensorimotor Cortex/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Young Adult
15.
Cortex ; 129: 314-328, 2020 08.
Article in English | MEDLINE | ID: mdl-32554227

ABSTRACT

Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.


Subject(s)
Motor Cortex , Adult , Cerebellum , Cues , Hand , Humans , Magnetic Resonance Imaging , Psychomotor Performance
16.
Parkinsonism Relat Disord ; 73: 85-93, 2020 04.
Article in English | MEDLINE | ID: mdl-31629653

ABSTRACT

Parkinson's disease is a heterogeneous disorder with both motor and non-motor symptoms that contribute to functional impairment. To develop effective, disease modifying treatments for these symptoms, biomarkers are necessary to detect neuropathological changes early in the disease course and monitor changes over time. Advances in MRI scan sequences and analytical techniques present numerous promising metrics to detect changes within the nigrostriatal system, implicated in the cardinal motor symptoms of the disease, and detect broader dysfunction involved in the non-motor symptoms, such as cognitive impairment. There is emerging evidence that iron sensitive, neuromelanin sensitive, diffusion sensitive, and resting state functional magnetic imaging measures can capture changes within the nigrostriatal system. Iron, neuromelanin, and diffusion sensitive measures demonstrate high specificity and sensitivity in distinguishing Parkinson's disease relative to controls, with inconsistent results differentiating Parkinson's disease relative to atypical parkinsonian disorders. They may also serve as useful monitoring biomarkers, with each possibly detecting different aspects of the disease course (early nigrosome changes versus broader substantia nigra changes). Investigations of non-motor symptoms, such as cognitive impairment, require careful consideration of the nature of cognitive deficits to characterize regional and network specific impairment. While the early, executive dysfunction observed is consistent with nigrostriatal degeneration, the memory and visuospatial impairments, the harbingers of a dementia process reflect dopaminergic independent dysfunction involving broader regions of the brain.


Subject(s)
Biomarkers , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Striatonigral Degeneration/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Humans , Parkinson Disease/complications
17.
Hum Brain Mapp ; 40(3): 955-966, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30407681

ABSTRACT

The role of ventral versus dorsolateral prefrontal regions in instantiating proactive and reactive cognitive control remains actively debated, with few studies parsing cue versus probe-related activity. Rapid sampling (460 ms), long cue-probe delays, and advanced analytic techniques (deconvolution) were therefore used to quantify the magnitude and variability of neural responses during the AX Continuous Performance Test (AX-CPT; N = 46) in humans. Behavioral results indicated slower reaction times during reactive cognitive control (AY trials) in conjunction with decreased accuracy and increased variability for proactive cognitive control (BX trials). The anterior insula/ventrolateral prefrontal cortex (aI/VLPFC) was commonly activated across comparisons of both proactive and reactive cognitive control. In contrast, activity within the dorsomedial and dorsolateral prefrontal cortex was limited to reactive cognitive control. The instantiation of proactive cognitive control during the probe period was also associated with sparse neural activation relative to baseline, potentially as a result of the high degree of neural and behavioral variability observed across individuals. Specifically, the variability of the hemodynamic response function (HRF) within motor circuitry increased after the presentation of B relative to A cues (i.e., late in HRF) and persisted throughout the B probe period. Finally, increased activation of right aI/VLPFC during the cue period was associated with decreased motor circuit activity during BX probes, suggesting a possible role for the aI/VLPFC in proactive suppression of neural responses. Considered collectively, current results highlight the flexible role of the VLPFC in implementing cognitive control during the AX-CPT task but suggest large individual differences in proactive cognitive control strategies.


Subject(s)
Cognition/physiology , Prefrontal Cortex/physiology , Reaction Time/physiology , Adult , Echo-Planar Imaging/methods , Female , Humans , Male
18.
Biol Psychiatry ; 84(9): 675-683, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29921417

ABSTRACT

BACKGROUND: Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. METHODS: Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. RESULTS: SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. CONCLUSIONS: This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes.


Subject(s)
Cognition/physiology , Frontal Lobe/physiopathology , Schizophrenia/physiopathology , Theta Rhythm/physiology , Adult , Case-Control Studies , Cues , Electroencephalography , Female , Humans , Male , Neuropsychological Tests , Reaction Time , Young Adult
19.
Ann Behav Med ; 52(5): 393-405, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29659656

ABSTRACT

Background: The developmental period of adolescence marks the initiation of new socioemotional and physical behaviors, including sexual intercourse. However, little is known about neurodevelopmental influences on adolescent sexual decision-making. Purpose: We sought to determine how subcortical brain volume correlated with condom use, and whether those associations differed by gender and pubertal development. Methods: We used FreeSurfer to extract subcortical volume among N = 169 sexually experienced youth (mean age 16.07 years; 31.95% female). We conducted multiple linear regressions to examine the relationship between frequency of condom use and subcortical volume, and whether these associations would be moderated by gender and pubertal development. Results: We found that the relationship between brain volume and condom use was better accounted for by pubertal development than by gender, and moderated the association between limbic brain volume and condom use. No significant relationships were observed in reward areas (e.g., nucleus accumbens) or prefrontal cortical control areas. Conclusions: These data highlight the potential relevance of subcortical socioemotional processing structures in adolescents' sexual decision-making.


Subject(s)
Adolescent Behavior/physiology , Adolescent Development/physiology , Limbic System/anatomy & histology , Puberty/physiology , Risk-Taking , Safe Sex/physiology , Adolescent , Condoms , Female , Humans , Limbic System/diagnostic imaging , Magnetic Resonance Imaging , Male
20.
J Neurotrauma ; 35(10): 1178-1184, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29336197

ABSTRACT

Neurosensory abnormalities are frequently observed following pediatric mild traumatic brain injury (pmTBI) and may underlie the expression of several common concussion symptoms and delay recovery. Importantly, active evaluation of neurosensory functioning more closely approximates real-world (e.g., physical and academic) environments that provoke symptom worsening. The current study determined whether symptom provocation (i.e., during neurosensory examination) improved classification accuracy relative to pre-examination symptom levels and whether symptoms varied as a function of point of care. Eighty-one pmTBI were recruited from the pediatric emergency department (PED; n = 40) or outpatient concussion clinic (n = 41), along with matched (age, sex, and education) healthy controls (HC; n = 40). All participants completed a brief (∼ 12 min) standardized neurosensory examination and clinical questionnaires. The magnitude of symptom provocation upon neurosensory examination was significantly higher for concussion clinic than for PED patients. Symptom provocation significantly improved diagnostic classification accuracy relative to pre-examination symptom levels, although the magnitude of improvement was modest, and was greater in the concussion clinic. In contrast, PED patients exhibited worse performance on measures of balance, vision, and oculomotor functioning than the concussion clinic patients, with no differences observed between both samples and HC. Despite modest sample sizes, current findings suggest that point of care represents a critical but highly under-studied variable that may influence outcomes following pmTBI. Studies that rely on recruitment from a single point of care may not generalize to the entire pmTBI population in terms of how neurosensory deficits affect recovery.


Subject(s)
Ambulatory Care/methods , Brain Concussion/diagnosis , Emergency Medical Services/methods , Neurologic Examination/methods , Point-of-Care Systems , Adolescent , Ambulatory Care Facilities , Child , Emergency Service, Hospital , Female , Humans , Male , Post-Concussion Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...