Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 15325, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31653919

ABSTRACT

Etching kinetics of swift heavy ions (SHI) tracks in olivine is investigated in frame of experimentally verified numerical approach. The model takes into account variation of induced chemical reactivity of the material around the whole ion trajectory with the nanometric accuracy. This enables a quantitative description of wet chemical etching of SHI tracks of different lengths and orientations towards to the sample surface. It is demonstrated that two different modes of etching, governed by diffusion of etchant molecules and by their reaction with the material must be observed in experiments using techniques with different resolution thresholds. Applicability limits of the optical microscopy for detection of heavy ion parameters by measuring of the lengthwise etching rates of the ion track are discussed.

2.
Sci Rep ; 9(1): 3837, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30846734

ABSTRACT

Response of dielectric crystals: MgO, Al2O3 and Y3Al5O12 (YAG) to irradiation with 167 MeV Xe ions decelerating in the electronic stopping regime is studied. Comprehensive simulations demonstrated that despite similar ion energy losses and the initial excitation kinetics of the electronic systems and lattices, significant differences occur among final structures of ion tracks in these materials, supported by experiments. No ion tracks appeared in MgO, whereas discontinuous distorted crystalline tracks of ~2 nm in diameter were observed in Al2O3 and continuous amorphous tracks were detected in YAG. These track structures in Al2O3 and YAG were confirmed by high resolution TEM data. The simulations enabled us to identify recrystallization as the dominant mechanism governing formation of detected tracks in these oxides. We analyzed effects of the viscosity in molten state, lattice structure and difference in the kinetics of metallic and oxygen sublattices at the crystallization surface on damage recovery in tracks.

SELECTION OF CITATIONS
SEARCH DETAIL
...