Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0269139, 2022.
Article in English | MEDLINE | ID: mdl-35657790

ABSTRACT

In spite of continuous development of gene therapy vectors with thousands of drug candidates in clinical drug trials there are only a small number approved on the market today stressing the need to have characterization methods to assist in the validation of the drug development process. The level of packaging of the vector capsids appears to play a critical role in immunogenicity, hence an objective quantitative method assessing the content of particles containing a genome is an essential quality measurement. As transmission electron microscopy (TEM) allows direct visualization of the particles present in a specimen, it naturally seems as the most intuitive method of choice for characterizing recombinant adeno-associated virus (rAAV) particle packaging. Negative stain TEM (nsTEM) is an established characterization method for analysing the packaging of viral vectors. It has however shown limitations in terms of reliability. To overcome this drawback, we propose an analytical method based on CryoTEM that unambiguously and robustly determines the percentage of filled particles in an rAAV sample. In addition, we show that at a fixed number of vector particles the portion of filled particles correlates well with the potency of the drug. The method has been validated according to the ICH Q2 (R1) guidelines and the components investigated during the validation are presented in this study. The reliability of nsTEM as a method for the assessment of filled particles is also investigated along with a discussion about the origin of the observed variability of this method.


Subject(s)
Dependovirus , Genetic Therapy , Capsid , Dependovirus/genetics , Genetic Vectors/genetics , Reproducibility of Results
2.
Virol J ; 3: 57, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-16919163

ABSTRACT

BACKGROUND: Characterization of the structural morphology of virus particles in electron micrographs is a complex task, but desirable in connection with investigation of the maturation process and detection of changes in viral particle morphology in response to the effect of a mutation or antiviral drugs being applied. Therefore, we have here developed a procedure for describing and classifying virus particle forms in electron micrographs, based on determination of the invariant characteristics of the projection of a given virus structure. The template for the virus particle is created on the basis of information obtained from a small training set of electron micrographs and is then employed to classify and quantify similar structures of interest in an unlimited number of electron micrographs by a process of correlation. RESULTS: Practical application of the method is demonstrated by the ability to locate three diverse classes of virus particles in transmission electron micrographs of fibroblasts infected with human cytomegalovirus. These results show that fast screening of the total number of viral structures at different stages of maturation in a large set of electron micrographs, a task that is otherwise both time-consuming and tedious for the expert, can be accomplished rapidly and reliably with our automated procedure. Using linear deformation analysis, this novel algorithm described here can handle capsid variations such as ellipticity and furthermore allows evaluation of properties such as the size and orientation of a virus particle. CONCLUSION: Our methodological procedure represents a promising objective tool for comparative studies of the intracellular assembly processes of virus particles using electron microscopy in combination with our digitized image analysis tool. An automated method for sorting and classifying virus particles at different stages of maturation will enable us to quantify virus production in all stages of the virus maturation process, not only count the number of infectious particles released from un infected cell.


Subject(s)
Capsid/classification , Capsid/ultrastructure , Cytomegalovirus/ultrastructure , Microscopy, Electron, Transmission/methods , Virion/metabolism , Algorithms , Cell Line , Cytomegalovirus/metabolism , Humans , Image Processing, Computer-Assisted , Virology/methods , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL
...