Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Mol Biol (Mosk) ; 54(3): 469-473, 2020.
Article in Russian | MEDLINE | ID: mdl-32492010

ABSTRACT

Recently, SGI-1027, a well-known inhibitor of DNA-methyl transferases (DNMTs), was reported to effectively reduce formation of pathogenic PrP^(Sc) in prion-infected cells. Herein, we confirm the elimination of PrP^(Sc) in chronic wasting disease (CWD) prion-infected neurons by SGI-1027, and pinpoint the binding region of human prion protein to SGI-1027. SGI-1027 is broadly functional against various prion disease types, including human prions. Previously, the inhibitory effects of SGI-1027 on DNMT function is well tested in various cell culture models. While neither treatment with a DNMTs enhancer S-adenosyl-L-methionine (SAM), nor with their inhibitor, 5-azacytidine, prevented PrP^(Sc) propagation, SGI-1027 did. Our study suggest that the anti-prion effects of SGI-1027 are a result of its direct interaction with PrP^(C), which effectively interferes with the pathogenic conformational change of PrP^(C) to PrP^(Sc). We conclude that SGI-1027 driven suppression of pathogenic PrP^(Sc) is independent of DNMT.


Subject(s)
Aminoquinolines/pharmacology , Prion Diseases , Prions/drug effects , Pyrimidines/pharmacology , Wasting Disease, Chronic , Animals , Cells, Cultured , Humans
2.
Mol Cells ; 10(4): 399-404, 2000 Aug 31.
Article in English | MEDLINE | ID: mdl-10987136

ABSTRACT

Non-redundant expressed sequence tags (ESTs) were generated from six different organs at various developmental stages of Chinese cabbage, Brassica rapa L. ssp. pekinensis. Of the 1,295 ESTs, 915 (71%) showed significantly high homology in nucleotide or deduced amino acid sequences with other sequences deposited in databases, while 380 did not show similarity to any sequences. Briefly, 598 ESTs matched with proteins of identified biological function, 177 with hypothetical proteins or non-annotated Arabidopsis genome sequences, and 140 with other ESTs. About 82% of the top-scored matching sequences were from Arabidopsis or Brassica, but overall 558 (43%) ESTs matched with Arabidopsis ESTs at the nucleotide sequence level. This observation strongly supports the idea that gene-expression profiles of Chinese cabbage differ from that of Arabidopsis, despite their genome structures being similar to each other. Moreover, sequence analyses of 21 Brassica ESTs revealed that their primary structure is different from those of corresponding annotated sequences of Arabidopsis genes. Our data suggest that direct prediction of Brassica gene expression pattern based on the information from Arabidopsis genome research has some limitations. Thus, information obtained from the Brassica EST study is useful not only for understanding of unique developmental processes of the plant, but also for the study of Arabidopsis genome structure.


Subject(s)
Brassica/genetics , Expressed Sequence Tags , Gene Expression Profiling , Genome, Plant , Arabidopsis/genetics , Databases as Topic , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...