Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 34(34): 8650-8659, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23948166

ABSTRACT

Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods.


Subject(s)
Dentin/chemistry , Lactic Acid/adverse effects , Tooth Demineralization/chemically induced , Adolescent , Adult , Dental Enamel/chemistry , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Stress, Mechanical , Surface Properties , Tooth Demineralization/pathology , Young Adult
2.
J Dent Res ; 90(9): 1122-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21730254

ABSTRACT

The mineral and organic phases of mineralized dentin contribute co-operatively to its strength and toughness. This study tested the null hypothesis that there is no difference in nano-dynamic mechanical behavior (complex modulus-E*; loss modulus-E''; storage modulus-E'; in GPa) of dentin hybrid layers (baseline: E*, 3.86 ± 0.24; E'', 0.23 ± 0.05; E', 3.85 ± 0.24) created by an etch-and-rinse adhesive in the presence or absence of biomimetic remineralization after in vitro aging. Using scanning probe microscopy and nano-dynamic mechanical analysis, we demonstrated that biomimetic remineralization restored the nano-dynamic mechanical behavior of heavily remineralized, resin-sparse regions of dentin hybrid layers (E*, 19.73 ± 3.85; E'', 8.75 ± 3.97; E', 16.02 ± 2.58) to those of the mineralized dentin base (E*, 19.20 ± 2.42; E'', 6.57 ± 1.96; E', 17.39 ± 2.0) [p > 0.05]. Conversely, those resin-sparse, water-rich regions degraded in the absence of biomimetic remineralization, with significant decline [p < 0.05] in their complex and storage moduli (E*, 0.83 ± 0.35; E'', 0.88 ± 0.24; E', 0.62 ± 0.32). Intrafibrillar apatite deposition preserves the integrity of resin-sparse regions of hybrid layers by restoring their nanomechanical properties to those exhibited by mineralized dentin.


Subject(s)
Dental Bonding , Dental Stress Analysis/methods , Dentin Permeability , Nanotechnology , Tooth Remineralization/methods , Dental Etching , Dentin/chemistry , Dentin-Bonding Agents , Elastic Modulus , Humans , Materials Testing , Methacrylates , Statistics, Nonparametric
3.
J Mater Sci Mater Med ; 22(5): 1127-35, 2011 May.
Article in English | MEDLINE | ID: mdl-21455677

ABSTRACT

The influence of microstructural variations and chemical composition to the mechanical properties and apparent flaw sensitivity of dentin were evaluated. Rectangular beams (N = 80) of the deep and superficial coronal dentin were prepared from virgin 3rd molars; twenty beams of each region were nominally flaw free and the remainder possessed a single "surface flaw" via a Vickers indentation. Mechanical properties were estimated in four-point flexure and examined using Weibull statistics. Fourier Transform Infrared Microspectroscopy in Reflectance Mode (FTIR-RM) was used to quantify the relative mineral to collagen ratios. Results showed that the average flexural strength, and strain and energy to fracture of the deep dentin beams were significantly lower (P < 0.005) than for the superficial dentin. While the deep dentin exhibited the highest mineral/collagen ratio and lowest damage tolerance, there was no significant effect of the surface flaws. Weibull analyses suggest that deep dentin possesses a larger distribution of intrinsic flaw sizes that contributes to the location dependence in strength.


Subject(s)
Dentin , Mechanics , Adolescent , Adult , Humans , Microscopy, Electron, Scanning , Young Adult
4.
J Dent Res ; 90(1): 82-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20940362

ABSTRACT

Inability of chemical phosphorylation of sodium trimetaphosphate to induce intrafibrillar mineralization of type I collagen may be due to the failure to incorporate a biomimetic analog to stabilize amorphous calcium phosphates (ACP) as nanoprecursors. This study investigated adsorption/desorption characteristics of hydrolyzed and pH-adjusted sodium trimetaphosphate (HPA-Na(3)P(3)O(9)) to collagen. Based on those results, a 5-minute treatment time with 2.8 wt% HPA-Na(3)P(3)O(9) was used in a single-layer reconstituted collagen model to confirm that both the ACP-stabilization analog and matrix phosphoprotein analog must be present for intrafibrillar mineralization. The results of that model were further validated by complete remineralization of phosphoric-acid-etched dentin treated with the matrix phosphoprotein analog and lined with a remineralizing lining composite, and with the ACP-stabilization analog supplied in simulated body fluid. An understanding of the basic processes involved in intrafibrillar mineralization of reconstituted collagen fibrils facilitates the design of novel tissue engineering materials for hard tissue repair and regeneration.


Subject(s)
Biomimetic Materials/chemistry , Collagen/chemistry , Polyphosphates/chemistry , Tooth Remineralization , Acid Etching, Dental , Adsorption , Calcium Phosphates/chemistry , Composite Resins/chemistry , Dental Materials/chemistry , Dentin/drug effects , Humans , Hydrogen-Ion Concentration , Hydrolysis , Materials Testing , Phosphoproteins/chemistry , Phosphoric Acids/chemistry , Phosphorylation , Spectroscopy, Fourier Transform Infrared , Time Factors
5.
Arch Pharm Res ; 20(1): 34-8, 1997 Feb.
Article in English | MEDLINE | ID: mdl-18975209

ABSTRACT

Recombinant human epidermal growth factor (rhEGF), a polypeptide of 53 amino acid residues, is subject to degradation by numerous enzymes, especially proteases, when it is applied on the skin for the treatment of open wound. Amastatin, aprotinin, bestatin, EDTA, EGTA, gabexate, gentamicin, leupeptin, and TPCK were investigated for the possible protease inhibitors, which may use to protect rhEGF from degradation by the enzymes in the skin. Skin homogenates containing protease inhibitors and rhEGF were incubated at 37 degrees C for 30 minutes. After the reaction was stopped with trifluoroacetic acid, the amount of rhEGF remaining in the sample was determined with an HPLC method. The percentages of rhEGF degraded, at the skin/PBS ratio of 0.25, in the mouse, rat, and human skin homogenate were 85%, 70%, and 46%, respectively. The degree of degradation of rhEGF in the cytosolic fraction was higher than that in the membrane fraction and these enzyme reactions were completed in 30 minutes. Bestatin, EGTA, and TPCK showed significant inhibitory effects on the degradation of rhEGF in the two fractions (p<0.05), while the other protease inhibitors had no significant inhibitory effects or, even resulted in deleterious effects. Therefore, the formulation containing one or several inhibitors among these effective inhibitors would be a promising topical preparation of rhEGF for the treatment of open wound.

SELECTION OF CITATIONS
SEARCH DETAIL
...