Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Adv Healthc Mater ; 13(15): e2303581, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386698

ABSTRACT

Abnormal oculomotor movements are known to be linked to various types of brain disorders, physical/mental shocks to the brain, and other neurological disorders, hence its monitoring can be developed into a simple but effective diagnostic tool. To overcome the limitations in the current eye-tracking system and electrooculography, a piezoelectric arrayed sensor system is developed using single-crystalline III-N thin-film transducers, which offers advantages of mechanical flexibility, biocompatibility, and high electromechanical conversion, for continuous monitoring of oculomotor movements by skin-attachable, safe, and highly sensitive sensors. The flexible piezoelectric eye movement sensor array (F-PEMSA), consisting of three transducers, is attached to the face temple area where it can be comfortably wearable and can detect the muscles' activity associated with the eye motions. Output voltages from upper, mid, and lower sensors (transducers) on different temple areas generate discernable patterns of output voltage signals with different combinations of positive/negative signs and their relative magnitudes for the various movements of eyeballs including 8 directional (lateral, vertical, and diagonal) and two rotational movements, which enable various types of saccade and pursuit tests. The F-PEMSA can be used in clinical studies on the brain-eye relationship to evaluate the functional integrity of multiple brain systems and cognitive processes.


Subject(s)
Eye Movements , Humans , Eye Movements/physiology , Wearable Electronic Devices , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Electrooculography/instrumentation , Electrooculography/methods
2.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432338

ABSTRACT

Group-IIIb-transition-metal-alloyed wurtzite Group-IIIa-nitride (IIIb-IIIa-N) thin films have higher piezoelectric characteristics than binary IIIa-N for a broad range of applications in photonic, electronic, sensing, and energy harvesting systems. We perform theoretical thermodynamic analysis for the deposition and epitaxial growth of Y-alloyed GaN and AlN films by a newly introduced growth technique of hybrid chemical vapor deposition (HybCVD), which can overcome the limitations of the conventional techniques. We investigate the equilibrium vapor pressures in the source zones to determine the dominant precursors of cations for the input of the mixing zone. Then, we study the driving force for the vapor-solid phase reactions of cation precursors in the growth zone to calculate the relationship between the solid composition of YxGa1-xN and YxAl1-xN and the relative amount of input precursors (Y vs. GaCl and AlCl3) in different deposition conditions, such as temperature, V/III precursor input ratio, and H2/inert-gas mixture ratio in the carrier gas. The xY composition in YAlN changes nearly linearly with the input ratio of cation precursors regardless of the growth conditions. However, YGaN composition changes non-linearly and is also substantially affected by the conditions. The thermodynamic analysis provides insight into the chemistry involved in the epitaxial growth of IIIa-IIIb-N by the HybCVD, as well as the information for suitable growth conditions, which will guide the way for ongoing experimental efforts on the improvement of piezoelectricity of the lead-free piezoelectric materials.

3.
Clin Psychopharmacol Neurosci ; 20(3): 581-583, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35879044

ABSTRACT

This case report aimed to discuss the efficacy of aripiprazole for dyskinesia in patients with functional movement disorder after streptococcal infection, with its biological action of modulating dopamine hyperactivity in the basal ganglia as a dopamine partial agonist. This report has shown that the [18F] N -(3-Fluoropropyl)-2ß-carbon ethoxy-3ß-(4-iodophenyl) nortropane positron emission tomography findings of the patient revealed that the dopamine hyperactivity in the basal ganglia at baseline was normalized after aripiprazole treatment due to its balancing effect as a dopamine partial agonist.

4.
PLoS One ; 17(1): e0262226, 2022.
Article in English | MEDLINE | ID: mdl-34982795

ABSTRACT

Deficits in color vision and related retinal changes hold promise as early screening biomarkers in patients with Alzheimer's disease. This study aimed to determine a cut-off score that can screen for Alzheimer's dementia using a novel color vision threshold test named the red, green, and blue (RGB) modified color vision plate test (RGB-vision plate). We developed the RGB-vision plate consisting of 30 plates in which the red and green hues of Ishihara Plate No.22 were sequentially adjusted. A total of 108 older people participated in the mini-mental state examination (MMSE), Ishihara plate, and RGB-vision plate. For the analyses, the participants were divided into two groups: Alzheimer's dementia (n = 42) and healthy controls (n = 38). K-means cluster analysis and ROC curve analysis were performed to identify the most appropriate cut-off score. As a result, the cut-off screening score for Alzheimer's dementia on the RGB-vision plate was set at 25, with an area under the curve of 0.773 (p<0.001). Moreover, there was a negative correlation between the RGB-vision plate thresholds and MMSE scores (r = -0.36, p = 0.02). In conclusion, patients with Alzheimer's dementia had a deficit in color vision. The RGB-vision plate is a potential early biomarker that may adequately detect Alzheimer's dementia.


Subject(s)
Alzheimer Disease/complications , Cognitive Dysfunction/diagnosis , Color Vision Defects/diagnosis , Color Vision/physiology , Mass Screening/methods , Mental Status and Dementia Tests/statistics & numerical data , Aged , Biomarkers/analysis , Case-Control Studies , Cognitive Dysfunction/etiology , Color Vision Defects/etiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Neuropsychological Tests , ROC Curve
5.
ACS Appl Mater Interfaces ; 10(23): 20085-20094, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29772174

ABSTRACT

The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 vs 8.09 W/mK are measured for samples with tilt angles of 10° versus 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

6.
Adv Sci (Weinh) ; 5(2): 1700637, 2018 02.
Article in English | MEDLINE | ID: mdl-29619312

ABSTRACT

The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

7.
ACS Appl Mater Interfaces ; 10(15): 12839-12846, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29595054

ABSTRACT

Piezoelectric generators (PEGs) are a promising power source for future self-powered electronics by converting ubiquitous ambient mechanical energy into electricity. However, most of the high-output PEGs are made from lead zirconate titanate, in which the hazardous lead could be a potential risk to both humans and environment, limiting their real applications. III-Nitride (III-N) can be a potential candidate to make stable, safe, and efficient PEGs due to its high chemical stability and piezoelectricity. Also, PEGs are preferred to be flexible rather than rigid, to better harvest the low-magnitude mechanical energy. Herein, a high-output, lead-free, and flexible PEG (F-PEG) is made from GaN thin film by transferring a single-crystalline epitaxial layer from silicon substrate to a flexible substrate. The output voltage, current density, and power density can reach 28 V, 1 µA·cm-2, and 6 µW·cm-2, respectively, by bending the F-PEG. The generated electric power by human finger bending is high enough to light commercial visible light-emitting diodes and charge commercial capacitors. The output performance is maintained higher than 95% of its original value after 10 000-cycle test. This highly stable, high-output, and lead-free GaN thin-film F-PEG has the great potential for future self-powered electronic devices and systems.

8.
ACS Appl Mater Interfaces ; 10(4): 3761-3768, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29319292

ABSTRACT

Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga2O3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga2O3/n-ZnO interface.

9.
ACS Appl Mater Interfaces ; 9(48): 41973-41979, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29148718

ABSTRACT

We have grown a single-crystal beryllium oxide (BeO) thin film on a gallium nitride (GaN) substrate by atomic-layer deposition (ALD) for the first time. BeO has a higher thermal conductivity, bandgap energy, and dielectric constant than SiO2. As an electrical insulator, diamond is the only material on earth whose thermal conductivity exceeds that of BeO. Despite these advantages, there is no chemical-vapor-deposition technique for BeO-thin-film deposition, and thus, it is not used in nanoscale-semiconductor-device processing. In this study, the BeO thin films grown on a GaN substrate with a single crystal showed excellent interface and thermal stability. Transmission electron microscopy showed clear diffraction patterns, and the Raman shifts associated with soft phonon modes verified the high thermal conductivity. The X-ray scan confirmed the out-of-plane single-crystal growth direction and the in-plane, 6-fold, symmetrical wurtzite structure. Single-crystalline BeO was grown on GaN despite the large lattice mismatch, which suggested a model that accommodated the strain of hexagonal-on-hexagonal epitaxy with 5/6 and 6/7 domain matching. BeO has a good dielectric constant and good thermal conductivity, bandgap energy, and single-crystal characteristics, so it is suitable for the gate dielectric of power semiconductor devices. The capacitance-voltage (C-V) results of BeO on a GaN-metal-oxide semiconductor exhibited low frequency dispersion, hysteresis, and interface-defect density.

10.
ACS Appl Mater Interfaces ; 8(43): 29565-29572, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27734670

ABSTRACT

Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm2/V·s and saturation current, I/lW > 50 µA/µm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

11.
Opt Express ; 23(16): 20340-9, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367889

ABSTRACT

We study light-extraction efficiency (LEE) of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) using flip-chip (FC) devices with varied thickness in remaining sapphire substrate by experimental output power measurement and computational methods using 3-dimensional finite-difference time-domain (3D-FDTD) and Monte Carlo ray-tracing simulations. Light-output power of DUV-FCLEDs compared at a current of 20 mA increases with thicker sapphire, showing higher LEE for an LED with 250-µm-thick sapphire by ~39% than that with 100-µm-thick sapphire. In contrast, LEEs of visible FCLEDs show only marginal improvement with increasing sapphire thickness, that is, ~6% improvement for an LED with 250-µm-thick sapphire. 3D-FDTD simulation reveals a mechanism of enhanced light extraction with various sidewall roughness and thickness in sapphire substrates. Ray tracing simulation examines the light propagation behavior of DUV-FCLED structures. The enhanced output power and higher LEE strongly depends on the sidewall roughness of the sapphire substrate rather than thickness itself. The thickness starts playing a role only when the sapphire sidewalls become rough. The roughened surface of sapphire sidewall during chip-separation process is critical for TM-polarized photons from AlGaN quantum wells to escape in lateral directions before they are absorbed by p-GaN and Au-metal. Furthermore, the ray tracing results show a reasonably good agreement with the experimental result of the LEE.

12.
Nano Lett ; 15(2): 896-902, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25562118

ABSTRACT

Resonance energy transfer (RET) has been employed for interpreting the energy interaction of graphene combined with semiconductor materials such as nanoparticles and quantum-well (QW) heterostructures. Especially, for the application of graphene as a transparent electrode for semiconductor light emitting diodes, the mechanism of exciton recombination processes such as RET in graphene-semiconductor QW heterojunctions should be understood clearly. Here, we characterized the temperature-dependent RET behaviors in graphene/semiconductor QW heterostructures. We then observed the tuning of the RET efficiency from 5% to 30% in graphene/QW heterostructures with ∼60 nm dipole-dipole coupled distance at temperatures of 300 to 10 K. This survey allows us to identify the roles of localized and free excitons in the RET process from the QWs to graphene as a function of temperature.

13.
Opt Express ; 20(21): 23339-48, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188297

ABSTRACT

We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 µm (63 cm(-1)), from 8.32 to 8.78 µm. The peak optical output power exceeds 280 mW for nine of the modes.


Subject(s)
Interferometry/instrumentation , Lasers , Lenses , Equipment Design , Equipment Failure Analysis , Quantum Theory
14.
Opt Express ; 19 Suppl 4: A897-9, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21747559
15.
Opt Lett ; 36(14): 2704-6, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21765515

ABSTRACT

A novel type of nanolasers, which combines the advantages of photonic crystal lasers and microdisk lasers, has been demonstrated based on InAlGaAs/InGaAs quantum wells using pulsed optical pumping at room temperature. It incorporates the properties of small footprint, small mode volume, and submilliwatt threshold, and favors vertical emission. We believe that this type of laser acts as a promising candidate for highly-integrated on-chip nanolasers in applications for signal processing and index sensing.

17.
J Phys Chem B ; 110(15): 7720-4, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16610866

ABSTRACT

An effective, low cost, simple, and mask-free pathway is demonstrated for achieving density control of the aligned ZnO nanowires grown for large-scale applications. By a slight variation of the thickness of the thermally evaporated gold catalyst film, a significant change in the density of aligned ZnO nanowires has been controlled. The growth processes of the nanowires on an Al(0.5)Ga(0.5)N substrate has been studied based on the wetting behavior of gold catalyst with or without source vapor, and the results classify the growth processes into three categories: separated dots initiated growth, continuous layer initiated growth, and scattered particle initiated growth. This study presents an approach for growing aligned nanowire arrays on a ceramic substrate with the simultaneous formation of a continuous conducting electrode at the roots, which is important for device applications, such as field emission.


Subject(s)
Nanowires/chemistry , Zinc Oxide/chemistry , Algorithms , Catalysis , Gold , Luminescence , Microscopy, Electron, Scanning
18.
J Am Chem Soc ; 127(21): 7920-3, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15913382

ABSTRACT

Vertically aligned single-crystal ZnO nanorods have been successfully fabricated on semiconducting GaN, Al0.5Ga0.5N, and AlN substrates through a vapor-liquid-solid process. Near-perfect alignment was observed for all substrates without lateral growth. Room-temperature photoluminescence measurements revealed a strong luminescence peak at approximately 378 nm. This work demonstrates the possibility of growing heterojunction arrays of ZnO nanorods on AlxGa1-xN, which has a tunable band gap from 3.44 to 6.20 eV by changing the Al composition from 0 to 1, and opens a new channel for building vertically aligned heterojunction device arrays with tunable optical properties and the realization of a new class of nanoheterojunction devices.


Subject(s)
Aluminum Compounds/chemistry , Gallium/chemistry , Nanostructures/chemistry , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Biosensing Techniques , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...