Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34947515

ABSTRACT

Silicon is an attractive anode material for lithium-ion batteries (LIBs) because of its natural abundance and excellent theoretical energy density. However, Si-based electrodes are difficult to commercialize because of their significant volume changes during lithiation that can result in mechanical damage. To overcome this limitation, we synthesized an eco-friendly water-soluble polyimide (W-PI) precursor, poly(amic acid) salt (W-PAmAS), as a binder for Si anodes via a simple one-step process using water as a solvent. Using the W-PAmAS binder, a composite Si electrode was achieved by low-temperature processing at 150 °C. The adhesion between the electrode components was further enhanced by introducing 3,5-diaminobenzoic acid, which contains free carboxylic acid (-COOH) groups in the W-PAmAS backbone. The -COOH of the W-PI binder chemically interacts with the surface of Si nanoparticles (SiNPs) by forming ester bonds, which efficiently bond the SiNPs, even during severe volume changes. The Si anode with W-PI binder showed improved electrochemical performance with a high capacity of 2061 mAh g-1 and excellent cyclability of 1883 mAh g-1 after 200 cycles at 1200 mA g-1. Therefore, W-PI can be used as a highly effective polymeric binder in Si-based high-capacity LIBs.

2.
ACS Appl Mater Interfaces ; 13(27): 31605-31613, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34192462

ABSTRACT

Li metal thickness has been considered a key factor in determining the electrochemical performance of Li metal anodes. The use of thin Li metal anodes is a prerequisite for increasing the energy density of Li secondary batteries intended for emerging large-scale electrical applications, such as electric vehicles and energy storage systems. To utilize thin (20 µm thick) Li metal anodes in Li metal secondary batteries, we investigated the synergistic effect of a functional additive (Li nitrate, LiNO3) and a dual-salt electrolyte (DSE) system composed of Li bis(fluorosulfonyl)imide (LiTFSI) and Li bis(oxalate)borate (LiBOB). By controlling the amount of LiNO3 in DSE, we found that DSE containing 0.05 M LiNO3 (DSE-0.05 M LiNO3) significantly improved the electrochemical performance of Li metal anodes. DSE-0.05 M LiNO3 increased the cycling performance by 146.3% [under the conditions of a 1C rate (2.0 mA cm-2), DSE alone maintained 80% of the initial discharge capacity up to the 205th cycle, whereas DSE-0.05 M LiNO3 maintained 80% up to the 300th cycle] and increased the rate capability by 128.2% compared with DSE alone [the rate capability of DSE-0.05 M LiNO3 = 50.4 mAh g-1, and DSE = 39.3 mAh g-1 under 7C rate conditions (14.0 mA cm-2)]. After analyzing the Li metal surface using scanning electron microscopy and X-ray photoelectron spectroscopy, we were able to infer that the stabilized solid electrolyte interphase layer formed by the combination of LiNO3 and the dual salt resulted in a uniform Li deposition during repeated Li plating/stripping processes.

3.
Nanomaterials (Basel) ; 10(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092192

ABSTRACT

A method of microalgae-templated spray drying to develop hierarchical porous Fe3O4/C composite microspheres as anode materials for Li-ion batteries was developed. During the spray-drying process, individual microalgae serve as building blocks of raspberry-like hollow microspheres via self-assembly. In the present study, microalgae-derived carbon matrices, naturally doped heteroatoms, and hierarchical porous structural features synergistically contributed to the high electrochemical performance of the Fe3O4/C composite microspheres, enabling a discharge capacity of 1375 mA·h·g-1 after 700 cycles at a current density of 1 A/g. Notably, the microalgal frameworks of the Fe3O4/C composite microspheres were maintained over the course of charge/discharge cycling, thus demonstrating the structural stability of the composite microspheres against pulverization. In contrast, the sample fabricated without microalgal templating showed significant capacity drops (up to ~40% of initial capacity) during the early cycles. Clearly, templating of microalgae endows anode materials with superior cycling stability.

4.
Nanomaterials (Basel) ; 10(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036223

ABSTRACT

To inhibit Li-dendrite growth on lithium (Li)-metal electrodes, which causes capacity deterioration and safety issues in Li-ion batteries, we prepared a porous polyimide (PI) sponge using a solution-processable high internal-phase emulsion technique with a water-soluble PI precursor solution; the process is not only simple but also environmentally friendly. The prepared PI sponge was processed into porous PI separators and used for Li-metal electrodes. The physical properties (e.g., thermal stability, liquid electrolyte uptake, and ionic conductivity) of the porous PI separators and their effect on the Li-metal anodes (e.g., self-discharge and open-circuit voltage properties after storage, cycle performance, rate capability, and morphological changes) were investigated. Owing to the thermally stable properties of the PI polymer, the porous PI separators demonstrated no dimensional changes up to 180 °C. In comparison with commercialized polyethylene (PE) separators, the porous PI separators exhibited improved wetting ability for liquid electrolytes; thus, the latter improved not only the physical properties (e.g., improved the electrolyte uptake and ionic conductivity) but also the electrochemical properties of Li-metal electrodes (e.g., maintained stable self-discharge capacity and open-circuit voltage features after storage and improved the cycle performance and rate capability) in comparison with PE separators.

5.
ACS Appl Mater Interfaces ; 11(46): 43122-43129, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31609112

ABSTRACT

Li metal experiences significant morphological changes during operation, resulting in rapid electrochemical performance degradation. In this study, a traditional balloon trick is applied to the Li metal surface to release mechanical stress and hinder morphological changes during operation. Polymer separators directly attach to the Li metal surface using a polymeric adhesive to fabricate a separator/Li metal integrated assembly. The separator/Li metal assembly improves not only the electrochemical performance but also safety issues related to Li metal anodes. This approach has three main advantages: (i) Li metal surface stabilization. The separator/Li metal assembly mechanically stabilize the Li metal surface, resulting in improved rate capability and cycle performance [85.0% of initial discharge capacity (90.2 mAh g-1) at a 7C condition for rate capability and 87.6% of discharge capacity (95.5 mAh g-1) at the 220th cycle] compared with the bare Li metal without separator integration [82.6% of initial discharge capacity (84.5 mAh g-1) at a 3C condition for rate capability and 58.0% of discharge capacity (62.6 mAh g-1) at the 120th cycle]. (ii) Suitability for high energy density battery implementation. The thickness of the polymeric adhesive is less than 1 µm, which is one-tenth of the coating layer of conventional thermally stable separators, but exhibits similar thermal shrinkage characteristics (0% shrinkage at 140 °C for 30 min). By reducing the thickness of inactive components, a larger volume of active material can be loaded into the battery system to increase the energy density of the battery. (iii) Simple process for mass production. The separator/Li metal integration process ("stick" and "dry") is very simple and can be easily applicable across industries.

6.
ACS Omega ; 4(7): 11724-11727, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460278

ABSTRACT

We used a cesium hexafluorophosphate (CsPF6)-containing liquid electrolyte for surface-patterned Li metal anodes and confirmed that there is a synergistic improvement in the electrochemical performance such as cycle performance and rate capability. For instance, the surface-patterned Li metal maintains 91.4% of the initial discharge capacity after the 1000th cycle (C/2 = 0.8 mA cm-2 for charging, 1C for discharging). When a large quantity of the CsPF6-containing liquid electrolyte (600 µL) is used, the bare Li metal and surface-patterned Li metal are more effectively stabilized in comparison with the case where 80 µL of electrolyte is used, resulting in improved electrochemical performance. Through systematic testing, we recognize that these results are because of the self-healing electrostatic shield mechanism, which is mainly dependent on the amount of Cs+ ions. A small amount of Cs+ ions cannot effectively counteract the incoming Li+ ions because they cannot form an effective electrostatic shield on the protrusions present on the Li metal surface.

7.
ACS Appl Mater Interfaces ; 11(35): 31777-31785, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31403273

ABSTRACT

We present a synergistic strategy to boost the cycling performance of Li-metal batteries. The strategy is based on the combined use of a micropattern (MP) on the surface of the Li-metal electrode and an advanced dual-salt electrolyte (DSE) system to more efficiently control undesired Li-metal deposition at higher current density (∼3 mA cm-2). The MP-Li electrode induces a spatially uniform current distribution to achieve dendrite-free Li-metal deposition beneath the surface layer formed by the DSE. The MP-Li/DSE combination exhibited excellent synergistic rate capability improvements that were neither observed with the MP-Li system nor for the bare Li/DSE system. The combination also resulted in the Li||LiMn2O4 battery attaining over 1 000 cycles, which is twice as long at the same capacity retention (80%) compared with the control cells (MP-Li without DSE). We further demonstrated extremely fast charging at a rate of 15 C (19.5 mA cm-2).

8.
Nanomaterials (Basel) ; 9(3)2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875936

ABSTRACT

Lithium⁻sulfur (Li⁻S) batteries are expected to be very useful for next-generation transportation and grid storage because of their high energy density and low cost. However, their low active material utilization and poor cycle life limit their practical application. The use of a carbon-coated separator in these batteries serves to inhibit the migration of the lithium polysulfide intermediate and increases the recyclability. We report the extent to which the electrochemical performance of Li⁻S battery systems depends on the characteristics of the carbon coating of the separator. Carbon-coated separators containing different ratios of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) were prepared and evaluated in Li⁻S batteries. The results showed that larger amounts of Super-P on the carbon-coated separator enhanced the electrochemical performance of Li⁻S batteries; for instance, the pure Super-P coating exhibited the highest discharge capacity (602.1 mAh g-1 at 150 cycles) with a Coulombic efficiency exceeding 95%. Furthermore, the separators with the pure Super-P coating had a smaller pore structure, and hence, limited polysulfide migration, compared to separators containing Super-P/VGCF mixtures. These results indicate that it is necessary to control the porosity of the porous membrane to control the movement of the lithium polysulfide.

9.
ACS Appl Mater Interfaces ; 10(19): 16521-16530, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29737830

ABSTRACT

The commercialization of Li metal electrodes is a long-standing objective in the battery community. To accomplish this goal, the formation of Li dendrites and mossy Li deposition, which cause poor cycle performance and safety issues, must be resolved. In addition, it is necessary to develop wide and thin Li metal anodes to increase not only the energy density, but also the design freedom of large-scale Li-metal-based batteries. We solved both issues by developing a novel approach involving the application of calendared stabilized Li metal powder (LiMP) electrodes as anodes. In this study, we fabricated a 21.5 cm wide and 40 µm thick compressed LiMP electrode and investigated the correlation between the compression level and electrochemical performance. A high level of compression (40% compression) physically activated the LiMP surface to suppress the dendritic and mossy Li metal formation at high current densities. Furthermore, as a result of the LiMP self-healing because of electrochemical activation, the 40% compressed LiMP electrode exhibited an excellent cycle performance (reaching 90% of the initial discharge capacity after the 360th cycle), which was improved by more than a factor of 2 compared to that of a flat Li metal foil with the same thickness (90% of the initial discharge capacity after the 150th cycle).

10.
Chemphyschem ; 19(13): 1627-1634, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29603536

ABSTRACT

Polymeric binder distribution within electrodes is crucial to guarantee the electrochemical performance of lithium-ion batteries (LIBs) for their long-term use in applications such as electric vehicles and energy-storage systems. However, due to limited analytical tools, such analyses have not been conducted so far. Herein, the adhesion properties of LIB electrodes at different depths are measured using a surface and interfacial cutting analysis system (SAICAS). Moreover, two LiCoO2 electrodes, dried at 130 and 230 °C, are carefully prepared and used to obtain the adhesion properties at every 10 µm of depth as well as the interface between the electrode composite and the current collector. At high drying temperatures, more of the polymeric binder material and conductive agent appears adjacent to the electrode surface, resulting in different adhesion properties as a function of depth. When the electrochemical properties are evaluated at different temperatures, the LiCoO2 electrode dried at 130 °C shows a much better high-temperature cycling performance than does the electrode dried at 230 °C due to the uniform adhesion properties and the higher interfacial adhesion strength.

11.
ACS Appl Mater Interfaces ; 9(21): 17814-17821, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28472879

ABSTRACT

To improve the rate capability and safety of lithium-ion batteries (LIBs), we developed an integrated separator/electrode by gluing polyethylene (PE) separators and electrodes using a polymeric adhesive (poly(vinylidene fluoride), PVdF). To fabricate thin and uniform polymer coating layers on the substrate, we applied the polymer solution using a spray-coating technique. PVdF was chosen because of its superior mechanical properties and stable electrochemical properties within the voltage range of commercial LIBs. The integrated separator/electrode showed superior thermal stability compared to that of the control PE separators. Although PVdF coating layers partially blocked the porous structures of the PE separators, resulting in reduced ionic conductivity (control PE = 0.666 mS cm-1, PVdF-coated PE = 0.617 mS cm-1), improved interfacial properties between the separators and the electrodes were obtained due to the intimate contact, and the rate capabilities of the LIBs based on integrated separators/electrodes showed 176.6% improvement at the 7 C rate (LIBs based on PVdF-coated and control PE maintained 48.4 and 27.4% of the initial discharge capacity, respectively).

12.
ACS Appl Mater Interfaces ; 9(7): 6000-6006, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28121126

ABSTRACT

Owing to the natural abundance of sodium resources and their low price, next-generation batteries employing an Na metal anode, such as Na-O2 and Na-S systems, have attracted a great deal of interest. However, the poor reversibility of an Na metal electrode during repeated electrochemical plating and stripping is a major obstacle to realizing rechargeable sodium metal batteries. It mainly originates from Na dendrite formation and exhaustive electrolyte decomposition due to the high reactivity of Na metal. Herein, we report a free-standing composite protective layer (FCPL) for enhancing the reversibility of an Na metal electrode by mechanically suppressing Na dendritic growth and mitigating the electrolyte decomposition. A systematic variation of the liquid electrolyte uptake of FCPL verifies the existence of a critical shear modulus for suppressing Na dendrite growth, being in good agreement with a linear elastic theory, and emphasizes the importance of the ionic conductivity of FCPL for attaining uniform Na plating and stripping. The Na-Na symmetric cell with an optimized FCPL exhibits a cycle life two times longer than that of a bare Na electrode.

13.
ACS Omega ; 2(11): 8438-8444, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-31457381

ABSTRACT

Herein, we improved the performance of Si/graphite (Si/C) composite anodes by introducing a highly adhesive co-polyimide (P84) binder and investigated the relationship between their electrochemical and adhesion properties using the 90° peel test and a surface and interfacial cutting analysis system. Compared to those of conventional poly(vinylidene fluoride) (PVdF)-based electrodes, the cycling performance and rate capability of P84-based Si/C anodes were improved by 47.0% (372 vs 547 mAh g-1 after 100 cycles at a 60 mA g-1 discharge condition) and 33.4% (359 vs 479 mAh g-1 after 70 cycles at a 3.0 A g-1 discharge condition), respectively. Importantly, the P84-based electrodes exhibited less pronounced morphological changes and a smaller total cell resistance after cycling than the PVdF-based ones, also showing better interlayer adhesion (F mid) and interfacial adhesion to Cu current collectors (F inter).

14.
ACS Omega ; 2(5): 2159-2164, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457568

ABSTRACT

Because of the constantly increasing demand for highly safe lithium-ion batteries (LIBs), interest in the development of ceramic composite separators (CCSs) is growing rapidly. Here, an in-depth study of the adhesion properties of the Al2O3 ceramic composite coating layer of CCSs is conducted using a peel test and a surface and interfacial cutting analysis system (SAICAS). Contrary to the 90 and 180° peel tests, which resulted in different adhesion strengths even for the same CCS sample, the SAICAS is able to measure the adhesion properties uniformly as a function of depth from the surface of the coating layer. The adhesion strengths measured at the midlayer (F mid) and interface (F inter, interlayer between the separator and the ceramic coating layer) are compared for various types of CCS samples with different amounts of polymeric binder, and it is found that F inter is higher than F mid for all CCSs. Compared with F mid, F inter is significantly affected by storage in the liquid electrolyte (under wet condition).

15.
Sci Rep ; 6: 30945, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27530802

ABSTRACT

A new Cu current collector was prepared by introducing a mussel-inspired polydopamine coating onto a Cu foil surface to improve the electrochemical performance of a Si electrode. The polydopamine coating covalently bonded the polymeric binder (with hydroxyl functional groups) via a condensation reaction. The coating improved the adhesion strength between the Si composite electrode and the Cu current collector (245.5 N m(-1), 297.5 N m(-1), and 353.2 N m(-1) for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively). We demonstrate that the detachment between the Si composite electrode and the current collector plays an important role in determining the electrochemical performance of the Si electrode. The cycle life and rate capability of the Si electrode improved when the polydopamine surface-treated Cu current collector was used (963.9 mAh g(-1), 1361.1 mAh g(-1), and 1590.0 mAh g(-1) for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively, at C/2 after 500 cycles).

16.
ACS Appl Mater Interfaces ; 8(33): 21366-72, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27509406

ABSTRACT

Dopamine, which can be electrochemically oxidized to polydopamine on cathode surface, was introduced as an electrolyte additive for high-voltage lithium-ion batteries (LIBs). The addition of 0.1 wt % dopamine to the electrolyte led to the formation of a polydopamine-containing layer on the cathode, thereby resulting in suppression of the oxidative decomposition of the electrolyte during high-voltage operation (up to 4.5 V) of a LiNi1/3Co1/3Mn1/3O2/artificial graphite cell. The addition of dopamine to the electrolyte improved the capacity retention of the cell from 136 to 147 mAh g(-1) after 100 cycles at a rate of 1 C and a cutoff voltage of 4.5 V, while the cycle performance and rate capability with a cutoff voltage of 4.3 V were comparable to those of the cell without dopamine. Further evidence of the positive impact of dopamine on high-voltage LIBs was the lower DC-IRs and AC impedances, as well as the retention of the cathode morphology even after operation at 4.5 V.

17.
ACS Appl Mater Interfaces ; 8(36): 23688-95, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27398829

ABSTRACT

Using a surface and interfacial cutting analysis system (SAICAS) that can measure the adhesion strength of a composite electrode at a specific depth from the surface, we can subdivide the adhesion strength of a composite electrode into two classes: (1) the adhesion strength between the Al current collector and the cathode composite electrode (FAl-Ca) and (2) the adhesion strength measured at the mid-depth of the cathode composite electrode (Fmid). Both adhesion strengths, FAl-Ca and Fmid, increase with increasing electrode density and loading level. From the SAICAS measurement, we obtain a mathematical equation that governs the adhesion strength of the composite electrodes. This equation revealed a maximum accuracy of 97.2% and 96.1% for FAl-Ca and Fmid, respectively, for four randomly chosen composite electrodes varying in electrode density and loading level.

18.
ACS Appl Mater Interfaces ; 7(27): 14851-8, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26075943

ABSTRACT

A highly adhesive and thermally stable copolyimide (P84) that is soluble in organic solvents is newly applied to silicon (Si) anodes for high energy density lithium-ion batteries. The Si anodes with the P84 binder deliver not only a little higher initial discharge capacity (2392 mAh g(-1)), but also fairly improved Coulombic efficiency (71.2%) compared with the Si anode using conventional polyvinylidene fluoride binder (2148 mAh g(-1) and 61.2%, respectively), even though P84 is reduced irreversibly during the first charging process. This reduction behavior of P84 was systematically confirmed by cyclic voltammetry and Fourier-transform infrared analysis in attenuated total reflection mode of the Si anodes at differently charged voltages. The Si anode with P84 also shows ultrastable long-term cycle performance of 1313 mAh g(-1) after 300 cycles at 1.2 A g(-1) and 25 °C. From the morphological analysis on the basis of scanning electron microscopy and optical images and of the electrode adhesion properties determined by surface and interfacial cutting analysis system and peel tests, it was found that the P84 binder functions well and maintains the mechanical integrity of Si anodes during hundreds of cycles. As a result, when the loading level of the Si anode is increased from 0.2 to 0.6 mg cm(-2), which is a commercially acceptable level, the Si anode could deliver 647 mAh g(-1) until the 300th cycle, which is still two times higher than the theoretical capacity of graphite at 372 mAh g(-1).

19.
ACS Appl Mater Interfaces ; 6(1): 526-31, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24321010

ABSTRACT

The adhesion strength of lithium-ion battery (LIB) electrodes consisting of active material, a nanosized electric conductor, and a polymeric binder is measured with a new analysis tool, called the Surface and Interfacial Cutting Analysis System (SAICAS). Compared to the conventional peel test with the same electrode, SAICAS gives higher adhesion strength owing to its elaborate cutting-based measurement system. In addition, the effects on the adhesion property of the polymeric binder type and content, electrode density, and measuring point are also investigated to determine whether SAICAS provides reliable results. The findings confirm SAICAS as an effective and promising tool to measure and analyze the adhesion properties of LIB electrodes.

20.
ACS Appl Mater Interfaces ; 5(22): 12005-10, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24195666

ABSTRACT

Mesoporous silicon nanofibers (m-SiNFs) have been fabricated using a simple and scalable method via electrospinning and reduction with magnesium. The prepared m-SiNFs have a unique structure in which clusters of the primary Si nanoparticles interconnect to form a secondary three-dimensional mesoporous structure. Although only a few nanosized primary Si particles lead to faster electronic and Li(+) ion diffusion compared to tens of nanosized Si, the secondary nanofiber structure (a few micrometers in length) results in the uniform distribution of the nanoparticles, allowing for the easy fabrication of electrodes. Moreover, these m-SiNFs exhibit impressive electrochemical characteristics when used as the anode materials in lithium ion batteries (LIBs). These include a high reversible capacity of 2846.7 mAh g(-1) at a current density of 0.1 A g(-1), a stable capacity retention of 89.4% at a 1 C rate (2 A g(-1)) for 100 cycles, and a rate capability of 1214.0 mAh g(-1) (at 18 C rate for a discharge time of ∼3 min).

SELECTION OF CITATIONS
SEARCH DETAIL
...