Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33922564

ABSTRACT

We combine infectious disease transmission and the non-pharmaceutical (NPI) intervention response to disease incidence into one closed model consisting of two coupled delay differential equations for the incidence rate and the time-dependent reproduction number. The model contains three parameters, the initial reproduction number, the intervention strength, and the response delay. The response is modeled by assuming that the rate of change of the reproduction number is proportional to the negative deviation of the incidence rate from an intervention threshold. This delay dynamical system exhibits damped oscillations in one part of the parameter space, and growing oscillations in another, and these are separated by a surface where the solution is a strictly periodic nonlinear oscillation. For the COVID-19 pandemic, the tipping transition from damped to growing oscillations occurs for response delays of about one week, and suggests that, without vaccination, effective control and mitigation of successive epidemic waves cannot be achieved unless NPIs are implemented in a precautionary manner, rather as a response to the present incidence rate. Vaccination increases the quiet intervals between waves, but with delayed response, future flare-ups can only be prevented by establishing a post-pandemic normal with lower basic reproduction number.


Subject(s)
COVID-19 , Pandemics , Basic Reproduction Number , Humans , Incidence , SARS-CoV-2
2.
Article in English | MEDLINE | ID: mdl-33917872

ABSTRACT

We estimate the weekly excess all-cause mortality in Norway and Sweden, the years of life lost (YLL) attributed to COVID-19 in Sweden, and the significance of mortality displacement. We computed the expected mortality by taking into account the declining trend and the seasonality in mortality in the two countries over the past 20 years. From the excess mortality in Sweden in 2019/20, we estimated the YLL attributed to COVID-19 using the life expectancy in different age groups. We adjusted this estimate for possible displacement using an auto-regressive model for the year-to-year variations in excess mortality. We found that excess all-cause mortality over the epidemic year, July 2019 to July 2020, was 517 (95%CI = (12, 1074)) in Norway and 4329 [3331, 5325] in Sweden. There were 255 COVID-19 related deaths reported in Norway, and 5741 in Sweden, that year. During the epidemic period of 11 March-11 November, there were 6247 reported COVID-19 deaths and 5517 (4701, 6330) excess deaths in Sweden. We estimated that the number of YLL attributed to COVID-19 in Sweden was 45,850 [13,915, 80,276] without adjusting for mortality displacement and 43,073 (12,160, 85,451) after adjusting for the displacement accounted for by the auto-regressive model. In conclusion, we find good agreement between officially recorded COVID-19 related deaths and all-cause excess deaths in both countries during the first epidemic wave and no significant mortality displacement that can explain those deaths.


Subject(s)
COVID-19 , Humans , Life Expectancy , Mortality , Norway/epidemiology , SARS-CoV-2 , Sweden/epidemiology
3.
PLoS One ; 16(2): e0238268, 2021.
Article in English | MEDLINE | ID: mdl-33630842

ABSTRACT

BACKGROUND: To suppress the COVID-19 outbreak, the Norwegian government closed all schools on March 13, 2020. The kindergartens reopened on April 20, and the schools on April 27 and May 11 of 2020. The effect of these measures is largely unknown since the role of children in the spread of the SARS-CoV-2 virus is still unclear. There are only a few studies of school closures as a separate intervention to other social distancing measures, and little research exists on the effect of school opening during a pandemic. OBJECTIVE: This study aimed to model the effect of opening kindergartens and the schools in Norway in terms of a change in the reproduction number (R). A secondary objective was to assess if we can use the estimated R after school openings to infer the rates of transmission between children in schools. METHODS: We used an individual-based model (IBM) to assess the reopening of kindergartens and schools in two Norwegian cities, Oslo, the Norwegian capital, with a population of approximately 680 000, and Tromsø, which is the largest city in Northern Norway, with a population of approximately 75 000. The model uses demographic information and detailed data about the schools in both cities. We carried out an ensemble study to obtain robust results in spite of the considerable uncertainty that remains about the transmission of SARS-CoV-2. RESULTS: We found that reopening of Norwegian kindergartens and schools are associated with a change in R of 0.10 (95%CI 0.04-0.16) and 0.14 (95%CI 0.01-0.25) in the two cities under investigation if the in-school transmission rates for the SARS-CoV-2 virus are equal to what has previously been estimated for influenza pandemics. CONCLUSION: We found only a limited effect of reopening schools on the reproduction number, and we expect the same to hold true in other countries where nonpharmaceutical interventions have suppressed the pandemic. Consequently, current R-estimates are insufficiently accurate for determining the transmission rates in schools. For countries that have closed schools, planned interventions, such as the opening of selected schools, can be useful to infer general knowledge about children-to-children transmission of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Communicable Disease Control , Basic Reproduction Number , COVID-19/prevention & control , Child , Humans , Mandatory Programs , Models, Biological , Norway , Pandemics/prevention & control , Schools
4.
Article in English | MEDLINE | ID: mdl-33371489

ABSTRACT

As of November 2020, the number of COVID-19 cases was increasing rapidly in many countries. In Europe, the virus spread slowed considerably in the late spring due to strict lockdown, but a second wave of the pandemic grew throughout the fall. In this study, we first reconstruct the time evolution of the effective reproduction numbers R(t) for each country by integrating the equations of the classic Susceptible-Infectious-Recovered (SIR) model. We cluster countries based on the estimated R(t) through a suitable time series dissimilarity. The clustering result suggests that simple dynamical mechanisms determine how countries respond to changes in COVID-19 case counts. Inspired by these results, we extend the simple SIR model for disease spread to include a social response to explain the number X(t) of new confirmed daily cases. In particular, we characterize the social response with a first-order model that depends on three parameters ν1,ν2,ν3. The parameter ν1 describes the effect of relaxed intervention when the incidence rate is low; ν2 models the impact of interventions when incidence rate is high; ν3 represents the fatigue, i.e., the weakening of interventions as time passes. The proposed model reproduces typical evolving patterns of COVID-19 epidemic waves observed in many countries. Estimating the parameters ν1,ν2,ν3 and initial conditions, such as R0, for different countries helps to identify important dynamics in their social responses. One conclusion is that the leading cause of the strong second wave in Europe in the fall of 2020 was not the relaxation of interventions during the summer, but rather the failure to enforce interventions in the fall.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/trends , Pandemics/prevention & control , Europe/epidemiology , Fatigue , Humans , Models, Theoretical
5.
Article in English | MEDLINE | ID: mdl-32899971

ABSTRACT

In a given country, the cumulative death toll of the first wave of the COVID-19 epidemic follows a sigmoid curve as a function of time. In most cases, the curve is well described by the Gompertz function, which is characterized by two essential parameters, the initial growth rate and the decay rate as the first epidemic wave subsides. These parameters are determined by socioeconomic factors and the countermeasures to halt the epidemic. The Gompertz model implies that the total death toll depends exponentially, and hence very sensitively, on the ratio between these rates. The remarkably different epidemic curves for the first epidemic wave in Sweden and Norway and many other countries are classified and discussed in this framework, and their usefulness for the planning of mitigation strategies is discussed.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Betacoronavirus , COVID-19 , Humans , Norway/epidemiology , Pandemics , SARS-CoV-2 , Socioeconomic Factors , Sweden/epidemiology
6.
SELECTION OF CITATIONS
SEARCH DETAIL
...