Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35163724

ABSTRACT

Derivatives of usnic acid (UA), a secondary metabolite from lichens, were synthesized to improve its anticancer activity and selectivity. Recently we reported the synthesis and activity of an UA isoxazole derivative, named 2b, against cancer cells of different origins. Herein, the molecular mechanisms underlying its activity and efficacy in vivo were tested. The viability of breast cancer or normal cells has been tested using an MTT assay. Cell and organelle morphology was analyzed using light, electron and fluorescence microscopy. Gene expression was evaluated by RNAseq and protein levels were evaluated by Western blotting. In vivo anticancer activity was evaluated in a mice xenograft model. We found that 2b induced massive vacuolization which originated from the endoplasmic reticulum (ER). ER stress markers were upregulated both at the mRNA and protein levels. ER stress was caused by the release of Ca2+ ions from the ER by IP3R channels which was mediated, at least partly, by phospholipase C (PLC)-synthetized 1,4,5-inositol triphosphate (IP3). ER stress led to cell death with features of apoptosis and paraptosis. When applied to nude mice with xenografted breast cancer cells, 2b stopped tumour growth. In mice treated with 2b, vacuolization was observed in tumour cells, but not in other organs. This study shows that the antiproliferative activity of 2b relates to the induction of ER stress in cancer, not in healthy, cells and it leads to breast cancer cell death in vitro and in vivo.


Subject(s)
Breast Neoplasms , Animals , Apoptosis , Benzofurans , Breast Neoplasms/drug therapy , Cell Death , Cell Line, Tumor , Endoplasmic Reticulum Stress , Female , Humans , Isoxazoles , Mice , Mice, Nude
3.
J Nat Prod ; 82(7): 1768-1778, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31282672

ABSTRACT

Usnic acid is a secondary metabolite abundantly found in lichens, for which promising cytotoxic and antitumor potential has been shown. However, knowledge concerning activities of its derivatives is limited. Herein, a series of usnic acid derivatives were synthesized and their antiproliferative potency against cancer cells of different origin was assessed. Some of the synthesized compounds were more active than usnic acid. Compounds 2a and 2b inhibited survival of all tested cancer cell lines in a dose- and time-dependent manner. Their IC50 values after 48 h of treatment were ca. 3 µM for MCF-7 and PC-3 cells and 1 µM for HeLa cells, while 3a and 3b revealed antiproliferative activity only against HeLa cells. All active usnic acid derivatives induced G0/G1 arrest and a drop in the fraction of HeLa cells in the S and G2/M phases. Compounds 2a and 2b decreased the clonogenic potential of the cancer cells evaluated and induced cell cycle arrest at the G0/G1 phase and apoptosis in MCF-7 cells. Moreover, they induced massive cytoplasmic vacuolization, which was associated with elevated dynein-dependent endocytosis, a process that has not been reported for usnic acid and indicates a novel mechanism of action of its synthetic derivatives. This work also shows that naturally occurring usnic acids are promising lead compounds for the synthesis of derivatives with more favorable properties against cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/chemical synthesis , Benzofurans/pharmacology , Cell Proliferation/drug effects , Antineoplastic Agents/chemistry , Benzofurans/chemistry , HeLa Cells , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...