Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 10(3): 1106-1118, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32076501

ABSTRACT

Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.

2.
Bioorg Med Chem ; 18(23): 8194-203, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21036621

ABSTRACT

A series of 10 new pro-juvenoids (juvenogens, insect hormonogenic compounds, pro-drug-like agents) was synthesized using isomeric synthetic juvenoids (insect juvenile hormone analogs) and steroid molecules as patterns modifying parts of the complex hormonogenic molecules. In addition, several new synthons were prepared, which were required by the designed synthetic protocol to achieve the target molecules. These pro-juvenoids were subjected to the topical screening tests and to the drinking assays on the red firebug (Pyrrhocoris apterus), a convenient model laboratory phytophagous insect. Simple and efficient synthetic procedures for the preparation of the target pro-juvenoids and their synthons are presented. Furthermore, the biological activity of the pro-juvenoids in comparison with the activity of their parent juvenoids and that of several commercially available agents is demonstrated. Juvenoids and pro-juvenoids may replace toxic insecticides persistent in the insect pest control because they have no adverse effects on non-target organisms and/or human.


Subject(s)
Juvenile Hormones/chemical synthesis , Steroids/chemistry , Animals , Heteroptera/drug effects , Insect Control , Juvenile Hormones/chemistry , Juvenile Hormones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...