Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 24(1): 187-199, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26745530

ABSTRACT

Most rotamer libraries are generated from subsets of the PDB and do not fully represent the conformational scope of protein side chains. Previous attempts to rectify this sparse coverage of conformational space have involved application of weighting and smoothing functions. We resolve these limitations by using physics-based molecular dynamics simulations to determine more accurate frequencies of rotameric states. This work forms part of our Dynameomics initiative and uses a set of 807 proteins selected to represent 97% of known autonomous protein folds, thereby eliminating the bias toward common topologies found within the PDB. Our Dynameomics derived rotamer libraries encompass 4.8 × 10(9) rotamers, sampled from at least 51,000 occurrences of each of 93,642 residues. Here, we provide a backbone-dependent rotamer library, based on secondary structure ϕ/ψ regions, and an update to our 2011 backbone-independent library that addresses the doubling of our dataset since its original publication.


Subject(s)
Molecular Dynamics Simulation , Peptide Library , Software , Animals , Humans , Isomerism , Protein Conformation , Ubiquitins/chemistry
2.
Protein Sci ; 23(11): 1584-95, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25142412

ABSTRACT

Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments.


Subject(s)
Computational Biology/methods , Databases, Protein , Molecular Dynamics Simulation , Proteins , Protein Conformation , Proteins/chemistry , Proteins/metabolism , Sequence Analysis, Protein
3.
IEEE Comput Graph Appl ; 34(2): 26-37, 2014.
Article in English | MEDLINE | ID: mdl-24808197

ABSTRACT

The need for data-centric scientific tools is growing; domains such as biology, chemistry, and physics are increasingly adopting computational approaches. So, scientists must deal with the challenges of big data. To address these challenges, researchers built a visual-analytics platform named DIVE (Data Intensive Visualization Engine). DIVE is a data-agnostic, ontologically expressive software framework that can stream large datasets at interactive speeds. In particular, DIVE makes novel contributions to structured-data-model manipulation and high-throughput streaming of large, structured datasets.


Subject(s)
Computational Biology/methods , Computer Graphics , Software , Molecular Dynamics Simulation , User-Computer Interface
4.
Bioinformatics ; 30(4): 593-5, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24336804

ABSTRACT

SUMMARY: Modern scientific investigation is generating increasingly larger datasets, yet analyzing these data with current tools is challenging. DIVE is a software framework intended to facilitate big data analysis and reduce the time to scientific insight. Here, we present features of the framework and demonstrate DIVE's application to the Dynameomics project, looking specifically at two proteins. AVAILABILITY AND IMPLEMENTATION: Binaries and documentation are available at http://www.dynameomics.org/DIVE/DIVESetup.exe.


Subject(s)
Computational Biology/methods , Computer Graphics , Documentation/methods , Mutant Proteins/metabolism , Software , Computer Simulation , Humans , Mutant Proteins/genetics , Mutation/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...