Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 86(7): 073508, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233384

ABSTRACT

At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

2.
Rev Sci Instrum ; 84(11): 113502, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24295435

ABSTRACT

A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D2-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

3.
Phys Rev Lett ; 107(21): 215003, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181890

ABSTRACT

Observations in the ASDEX Upgrade tokamak show a correlation between the gradient of the intrinsic toroidal rotation profile and the logarithmic gradient of the electron density profile. The intrinsic toroidal rotation in the center of the plasma reverses from co- to countercurrent when the logarithmic density gradients are large, and the turbulence is either dominated by trapped electron modes or is at the transition between ion temperature gradient and trapped electron modes. A study based on local gyrokinetic calculations suggests that the dominant trend in the observations can be explained by the combination of residual stresses produced by E × B and profile shearing mechanisms.

4.
Phys Rev Lett ; 106(6): 065001, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21405471

ABSTRACT

A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

5.
Phys Rev Lett ; 95(8): 085001, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-16196865

ABSTRACT

Trapped electron modes are one of the candidates to explain turbulence driven electron heat transport observed in tokamaks. This instability has two characteristics: a threshold in normalized gradient and stabilization by collisions. Experiments using modulated electron cyclotron heating in the ASDEX Upgrade tokamak demonstrate explicitly the existence of the threshold. The stabilization with increasing collisionality is evidenced by a strong decrease of the propagation of heat pulses, explained by a transition to ion temperature gradient driven transport. These results are supported by linear gyrokinetic calculations.

6.
Phys Rev Lett ; 90(20): 205003, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12785903

ABSTRACT

The existence of an anomalous particle pinch in magnetized tokamak plasmas is still questioned. Contradictory observations have been collected so far in tokamaks. Clear experimental evidence that density peaking in tokamak plasmas drops with increasing collisionality is provided for the first time. This phenomenon is explained by means of existing theoretical models based on the fluid description of drift wave instabilities, provided that such models include the dissipative effects introduced by collisions on the mentioned instabilities. These results reconcile the apparent contradictions found so far in the experiments.

7.
Phys Rev Lett ; 86(24): 5498-501, 2001 Jun 11.
Article in English | MEDLINE | ID: mdl-11415285

ABSTRACT

The electron heat transport is investigated in ASDEX Upgrade conventional L-mode plasmas with pure electron heating provided by electron-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that electron heat transport exhibits a clear threshold in inverted Delta T(e)/T(e) and also suggest that it has a gyro-Bohm character.

8.
Phys Rev Lett ; 86(11): 2325-8, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11289920

ABSTRACT

Energy transport by the electrons in a tokamak is examined in steady-state and power modulation experiments using electron cyclotron heating. The results are consistent with the assumption that temperature profiles are limited by a critical gradient length, leading to "stiff" profiles. The modulation experiments show that the stiffness factor increases with temperature. They strongly suggest that turbulence driven by the electron temperature gradient may be a dominant mechanism of electron transport. Although possibly not universal, these results are valid under various plasma conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...