Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046169

ABSTRACT

The study proposes an outlier refinement methodology for automatic distortion rectification of wide-angle and fish-eye lens camera models in the context of streamlining vision-based tasks. The line-members sets are estimated in a scene through accumulation of line candidates emerging from the same edge source. An iterative optimization with an outlier refinement scheme was applied to the loss value, to simultaneously remove the extremely curved outliers from the line-members set and update the robust line members as well as estimating the best-fit distortion parameters with lowest possible loss. The proposed algorithm was able to rectify the distortions of wide-angle and fish-eye cameras even in extreme conditions such as heavy illumination changes and severe lens distortions. Experiments were conducted using various evaluation metrics both at the pixel-level (image quality, edge stretching effects, pixel-point error) as well as higher-level use-cases (object detection, height estimation) with respect to real and synthetic data from publicly available, privately acquired sources. The performance evaluations of the proposed algorithm have been investigated using an ablation study on various datasets in correspondence to the significance analysis of the refinement scheme and loss function. Several quantitative and qualitative comparisons were carried out on the proposed approach against various self-calibration approaches.

2.
Appl Opt ; 49(5): 927-35, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20154764

ABSTRACT

We present atmospheric degradation correction of terahertz (THz) beams based on multiscale signal decomposition and a combination of a Wiener deconvolution filter and artificial neural networks. THz beams suffer from strong attenuation by water molecules in the air. The proposed signal restoration approach finds the filter coefficients from a pair of reference signals previously measured from low-humidity conditions and current background air signals. Experimental results with two material samples of different chemical compositions demonstrate that the multiscale signal restoration technique is effective in correcting atmospheric degradation compared to individual and non-multiscale approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...