Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Plant Biol ; 65(1): 21-28, 2022.
Article in English | MEDLINE | ID: mdl-34602836

ABSTRACT

Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.

2.
J Integr Plant Biol ; 63(8): 1505-1520, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34051041

ABSTRACT

Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/immunology , Lactococcus/virology , Nicotiana/genetics , Vaccines, Combined/immunology , Animals , Antigens, Viral/immunology , Chickens/immunology , Endoplasmic Reticulum/metabolism , Hemagglutinins/chemistry , Hemagglutinins/metabolism , Immunity/drug effects , Immunization , Mice , Plant Extracts/isolation & purification , Plants, Genetically Modified , Protein Domains , Protein Multimerization
3.
Korean J Gastroenterol ; 42(6): 519-26, 2003 Dec.
Article in Korean | MEDLINE | ID: mdl-14695709

ABSTRACT

BACKGROUND/AIMS: Pancreatic acini of streptozotocin (STZ)-induced diabetic rats release amylase less than normal acini on cholecystokinin (CCK) stimulation. Pancreatic enzyme secretion has been closely related to the intracellular calcium concentration ([Ca2(+)](i)) of the acinar cell. In the present study, sequential changes of the intracellular calcium signal which probably underlie the altered enzyme secretion in response to CCK-8 were investigated using pancreatic acini from diabetic rats. METHODS: Diabetic rats were prepared by single intravenous injection of STZ (70 mg/kg). Stimulating experiments with CCK-8 were performed 7 days later. Pancreatic acini were isolated by collagenase digestion. Amylase release and [Ca2(+)](i) were measured by colorimethod and calcium imaging, respectively. The geometry of intracellular calcium signal was analyzed. RESULTS: Normal acini exhibited concentration-dependent [Ca2(+)](i) increase and regular oscillatory calcium signal on CCK-8 stimulation. Amylase release was also concentration-dependent. However, diabetic acini showed significantly less [Ca2(+)](i) increase, prolonged time to peak [Ca2(+)](i), decreased calcium spikes number, and decreased amylase release compared with normal acini. The decreased [Ca2(+)](i) in diabetic acini was restored significantly by insulin treatment. CONCLUSIONS: Relatively decreased amylase release in diabetic pancreatic acini in response to CCK, appears to be associated with altered calcium signal due to insulin deficiency.


Subject(s)
Amylases/metabolism , Calcium Signaling/drug effects , Diabetes Mellitus, Experimental/physiopathology , Pancreas/metabolism , Sincalide/pharmacology , Animals , Pancreas/cytology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...