Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochem J ; 475(13): 2127-2151, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29760236

ABSTRACT

YlaD, a membrane-anchored anti-sigma (σ) factor of Bacillus subtilis, contains a HX3CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained Zn and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX3CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese (Mn). The ylaC gene expression using ßGlu activity from P yla :gusA was observed at the late-exponential and early-stationary phase, and the ylaC-overexpressing mutant constitutively expressed gene transcripts of clpP and sigH, an important alternative σ factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in Mn ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and Mn-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function σ factors during sporulation via a Mn-dependent redox-sensing molecular switch.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Manganese/metabolism , Spores, Bacterial/metabolism , Transcription, Genetic/physiology , Amino Acid Motifs , Bacterial Proteins/genetics , Oxidation-Reduction , Promoter Regions, Genetic , Spores, Bacterial/genetics
2.
Mol Biol Rep ; 42(3): 651-63, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25391768

ABSTRACT

Human chemokine (C-C motif) ligand 2 (hCCL2) is a small cytokine in the CC chemokine family that attracts monocytes, memory T lymphocytes, and natural killer cells to the site of tissue injury- or infection-induced inflammation. hCCL2 has been implicated in the pathogeneses of diseases characterized by monocytic infiltrates, including psoriasis, rheumatoid arthritis, atherosclerosis, multiple sclerosis, and insulin-resistant diabetes. The prokaryotic overexpression of hCCL2 has been investigated previously in an attempt to develop biomedical applications for this factor, but this has been hampered by protein misfolding and aggregation into inclusion bodies. In our present study, we screened 7 protein tags-Trx, GST, MBP, NusA, His8, PDI, and PDIb'a'-for their ability to allow the soluble overexpression of hCCL2. Three tags-MBP, His8, and PDI-solubilized more than half of the expressed hCCL2 fusion proteins. Lowering the expression temperature to 18 °C significantly further improved the solubility of all fusion proteins. MBP was chosen for further study based on its solubility, expression level, ease of purification, and tag size. MBP-CCL2 was purified using conventional chromatography and cleaved using TEV or Factor Xa proteases. Biological activity was assessed using luciferase and cell migration assays. Factor Xa-cleaved hCCL2 was found to be active and TEV-cleaved hCCL2 showed relatively less activity. This is probably because the additional glycine residues present at the N-terminus of hCCL2 following TEV digestion interfere with the binding of hCCL2 to its receptor.


Subject(s)
Chemokine CCL2/genetics , Escherichia coli/genetics , Gene Expression , Maltose-Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Cell Line , Chemokine CCL2/metabolism , Escherichia coli/metabolism , Gene Order , Humans , Plasmids/genetics , Recombinant Fusion Proteins/metabolism , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
PLoS One ; 9(3): e89038, 2014.
Article in English | MEDLINE | ID: mdl-24614134

ABSTRACT

Human growth hormone (hGH) is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli) has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), protein disulfide bond isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.


Subject(s)
Human Growth Hormone/isolation & purification , Maltose-Binding Proteins/metabolism , Prokaryotic Cells/metabolism , Protein Disulfide-Isomerases/metabolism , Recombinant Fusion Proteins/isolation & purification , Thioredoxins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Proliferation/drug effects , Escherichia coli/metabolism , Human Growth Hormone/chemistry , Human Growth Hormone/pharmacology , Humans , Molecular Sequence Data , Plasmids/metabolism , Prokaryotic Cells/drug effects , Protein Stability/drug effects , Protein Structure, Tertiary , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
4.
PLoS One ; 9(3): e89906, 2014.
Article in English | MEDLINE | ID: mdl-24594699

ABSTRACT

Human granulocyte colony-stimulating factor (hGCSF), a neutrophil-promoting cytokine, is an effective therapeutic agent for neutropenia patients who have undergone several cancer treatments. Efficient production of hGCSF using E. coli is challenging because the hormone tends to aggregate and forms inclusion bodies. This study examined the ability of seven different N-terminal fusion tags to increase expression of soluble hGCSF in E. coli. Four tag proteins, namely maltose-binding protein (MBP), N-utilization substance protein A, protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), increased the solubility of hGCSF under normal conditions. Lowering the expression temperature from 30°C to 18°C also increased the solubility of thioredoxin-tagged and glutathione S-transferase-tagged hGCSF. By contrast, hexahistidine-tagged hGCSF was insoluble at both temperatures. Simple conventional chromatographic methods were used to purify hGCSF from the overexpressed PDIb'a'-hGCSF and MBP-hGCSF proteins. In total, 11.3 mg or 10.2 mg of pure hGCSF were obtained from 500 mL cultures of E. coli expressing PDIb'a'-hGCSF or MBP-hGCSF, respectively. SDS-PAGE analysis and silver staining confirmed high purity of the isolated hGCSF proteins, and the endotoxin levels were less than 0.05 EU/µg of protein. Subsequently, the bioactivity of the purified hGCSF proteins similar to that of the commercially available hGCSF was confirmed using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50s of the cell proliferation dose-response curves for hGCSF proteins purified from MBP-hGCSF and PDIb'a'-hGCSF were 2.83±0.31 pM, and 3.38±0.41 pM, respectively. In summary, this study describes an efficient method for the soluble overexpression and purification of bioactive hGCSF in E. coli.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , Maltose-Binding Proteins/metabolism , Protein Disulfide-Isomerases/metabolism , Cell Proliferation , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/isolation & purification , Humans
5.
Protein Expr Purif ; 95: 211-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412408

ABSTRACT

Human erythropoietin (hEpo) is an essential regulator of erythrocyte production that induces the division and differentiation of erythroid progenitor cells in the bone marrow into mature erythrocytes. It is widely used for the treatment of anemia resulting from chronic kidney disease, chemotherapy, and cancer-related therapies. Active hEpo, and hEpo analogs, have been purified primarily from mammalian cells, which has several disadvantages, including low yields and high production costs. Although an Escherichia coli (E. coli) expression system may provide economic production of therapeutic proteins, it has not been used for the production of recombinant hEpo (rhEpo) because it aggregates in inclusion bodies in the E. coli cytoplasm and is not modified post-translationally. We investigated the soluble overexpression of active rhEpo with various protein tags in E. coli, and found out that several tags increased the solubility of rhEpo. Among them maltose binding protein (MBP)-tagged rhEpo was purified using affinity and gel filtration columns. Non-denaturing electrophoresis and MALDI-TOF MS analysis demonstrated that the purified rhEpo had two intra-disulfide bonds identical to those of the native hEpo. An in vitro proliferation assay showed that rhEpo purified from E. coli had similar biological activity as rhEpo derived from CHO cells. Therefore, we report for the first time that active rhEpo was overexpressed as a soluble form in the cytoplasm of E. coli and purified it in simple purification steps. We hope that our results offer opportunities for progress in rhEpo therapeutics.


Subject(s)
Erythropoietin/isolation & purification , Erythropoietin/metabolism , Escherichia coli/metabolism , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Cell Line , Cell Proliferation , Cloning, Molecular , Erythropoietin/chemistry , Erythropoietin/genetics , Escherichia coli/genetics , Humans , Maltose-Binding Proteins/genetics , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Solubility
6.
PLoS One ; 8(12): e83781, 2013.
Article in English | MEDLINE | ID: mdl-24358310

ABSTRACT

Human leukemia inhibitory factor (hLIF) is a multifunctional cytokine that is essential for maintaining the pluripotency of embryonic stem cells. hLIF may be also be useful in aiding fertility through its effects on increasing the implantation rate of fertilized eggs. Thus these applications in biomedical research and clinical medicine create a high demand for bioactive hLIF. However, production of active hLIF is problematic since eukaryotic cells demonstrate limited expression and prokaryotic cells produce insoluble protein. Here, we have adopted a hybrid protein disulfide isomerase design to increase the solubility of hLIF in Escherichia coli. Low temperature expression of hLIF fused to the b'a' domain of protein disulfide isomerase (PDIb'a') increased the soluble expression in comparison to controls. A simple purification protocol for bioactive hLIF was established that includes removal of the PDIb'a' domain by cleavage by TEV protease. The resulting hLIF, which contains one extra glycine residue at the N-terminus, was highly pure and demonstrated endotoxin levels below 0.05 EU/µg. The presence of an intramolecular disulfide bond was identified using mass spectroscopy. This purified hLIF effectively maintained the pluripotency of a murine embryonic stem cell line. Thus we have developed an effective method to produce a pure bioactive version of hLIF in E. coli for use in biomedical research.


Subject(s)
Escherichia coli/genetics , Gene Expression , Leukemia Inhibitory Factor/genetics , Protein Disulfide-Isomerases/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Gene Order , Humans , Leukemia Inhibitory Factor/metabolism , Mass Spectrometry , Molecular Sequence Data , Plasmids/genetics , Protein Disulfide-Isomerases/metabolism , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Solubility
7.
Appl Biochem Biotechnol ; 170(1): 67-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23471584

ABSTRACT

Among the members of the fibroblast growth factor (FGF) family that affect the growth, differentiation, migration, and survival of many cell types, FGF2 is the most abundant in the central nervous system. Because of its wound healing effects, FGF2 has potential as a therapeutic agent. The protein is also added to the culture media to maintain stem cells. Expression and purification procedures for FGF2 that are highly efficient and low cost have been intensively investigated for the past two decades. Our current study focuses on the purification of FGF2 fused with b'a' domains of human protein disulfide isomerase to elevate overexpression, solubility, and stability with a simplified experimental procedure using only ion exchange chromatography, as well as on the confirmation of the biological activity of FGF2 on fibroblast Balb/c 3T3 cells and hippocampal neural cells.


Subject(s)
Escherichia coli/genetics , Fibroblast Growth Factor 2/isolation & purification , Neurons/drug effects , Protein Disulfide-Isomerases/genetics , Recombinant Fusion Proteins/isolation & purification , Amino Acid Sequence , Animals , Cells, Cultured , Escherichia coli/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Gene Expression , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mice , Molecular Sequence Data , NIH 3T3 Cells , Neurons/cytology , Neurons/metabolism , Plasmids , Protein Disulfide-Isomerases/metabolism , Protein Engineering , Protein Stability , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
8.
Appl Biochem Biotechnol ; 169(5): 1633-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23329142

ABSTRACT

Extracellular superoxide dismutase (EC-SOD) is the only enzyme that removes superoxide radical in the extracellular space. The reduction of EC-SOD is linked to many diseases, suggesting that the protein may have therapeutic value. EC-SOD is reported to be insoluble and to make inclusion bodies when overexpressed in the cytoplasm of Escherichia coli. The refolding process has the advantage of high yield, but has the disadvantage of frequent aggregation or misfolding during purification. For the first time, this study shows that fusion with maltose-binding protein (MBP), N-utilization substance protein A, and protein disulfide isomerase enabled the soluble overexpression of EC-SOD in the cytoplasm of E. coli. MBP-tagged human EC-SOD (hEC-SOD) was purified by MBP affinity and anion exchange chromatography, and its identity was confirmed by MALDI-TOF MS analysis. The purified protein showed good enzyme activity in vitro; however, there was a difference in metal binding. When copper and zinc were incorporated into hEC-SOD before MBP tag cleavage, the enzymatic activity was higher than when the metal ions were bound to the purified protein after MBP tag cleavage. Therefore, the enzymatic activity of hEC-SOD is associated with metal incorporation and protein folding via disulfide bond.


Subject(s)
Copper/chemistry , Disulfides/chemistry , Escherichia coli/genetics , Superoxide Dismutase/chemistry , Zinc/chemistry , Amino Acid Sequence , Copper/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Disulfides/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Extracellular Space , Gene Expression , Humans , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Folding , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Solubility , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors , Zinc/metabolism
9.
PLoS One ; 6(10): e25226, 2011.
Article in English | MEDLINE | ID: mdl-21984906

ABSTRACT

BACKGROUND: UDP-glucose dehydrogenase (UGDH) is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY: Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH) in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION: In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.


Subject(s)
Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Amino Acid Sequence , Binding Sites , Biocatalysis , Glucose/metabolism , Humans , Models, Molecular , Molecular Sequence Data , NAD/metabolism , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , Uridine Diphosphate/metabolism
10.
J Microbiol ; 44(2): 206-16, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16728958

ABSTRACT

In this study, we have attempted to characterize the functions of YlaC and YlaD encoded by ylaC and ylaD genes in Bacillus subtilis. The GUS reporter gene, driven by the yla operon promoter, was expressed primarily during the late exponential and early stationary phase, and its expression increased as the result of hydrogen peroxide treatment. Northern and Western blot analyses revealed that the level of ylaC transcripts and YlaC increased as the result of challenge with hydrogen peroxide. A YlaC-overexpressing strain evidenced hydrogen peroxide resistance and a three-fold higher peroxidase activity as compared with a deletion mutant. YlaC-overexpressing and YlaD-disrupted strains evidenced higher sporulation rates than were observed in the YlaC-disrupted and YlaD-overexpressing strains. Analyses of the results of native polyacrylamide gel electrophoresis of recombinant YlaC and YlaD indicated that interaction between YlaC and YlaD was regulated by the redox state of YlaD in vitro. Collectively, the results of this study appear to suggest that YlaC regulated by the YlaD redox state, contribute to oxidative stress resistance in B. subtilis.


Subject(s)
Bacillus subtilis/drug effects , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Hydrogen Peroxide/pharmacology , Peroxidase/genetics , Sigma Factor/metabolism , Amino Acid Sequence , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Base Sequence , Cloning, Molecular , Cytoplasm/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genes, Reporter , Molecular Sequence Data , Oxidation-Reduction , Oxidative Stress/genetics , Peroxidase/metabolism , Sigma Factor/genetics , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Transcription, Genetic
11.
J Microbiol ; 43(3): 244-50, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15995641

ABSTRACT

The effect of cytochrome c550 encoded by cccA in Bacillus subtilis during the event of sporulation was investigated. The sporulation of cccA-overexpressing mutant was significantly accelerated, while disruptant strain showed delayed sporulation in spite of the same growth rate. Activity of sporulation stage-0-specific enzyme, extracellular alpha-amylase of mutant strains was similar to that of the control strain, but cccA-overexpressing mutant exhibited higher activity of stage-II-specific alkaline phosphatase and stage-III-specific glucose dehydrogenase when compared to deletion mutant and control strain. Northern blot analysis also revealed that cccA-overexpressing mutant showed high level of spo0A transcripts, while the disruptant rarely expressed spo0A. These results suggested that although cytochrome c550 is dispensable for growth and sporulation, expression of cccA may play an important role for initiation of sporulation through regulation of spo0A expression.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Cytochrome c Group/metabolism , Gene Expression Regulation, Bacterial , Transcription Factors/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Culture Media , Cytochrome c Group/genetics , Gene Deletion , Spores, Bacterial/physiology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...