Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(9): 6422-6426, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677807

ABSTRACT

Tin monoxide (SnO) anodes are promising candidates for use in sodium-ion batteries because of their high theoretical capacities and stable cycle performance. In previous reports, electrodes with excellent performance have been prepared by using nano-sized SnO particles. However, the synthesis of nano-sized SnO particles is complex, time-consuming, and expensive. In this paper, an anode of micron-sized SnO is prepared by using commercial micron-sized SnO particles. The electrode exhibits a reversible capacity of 450 mAh g-1 in the 1st cycle at a current rate of 100 mA g-1. We used a tetraethylene glycol dimethyl ether (TEGDME)-based electrolyte, which is well known for its superior electrochemical performance in sodium-ion batteries. The mechanism of operation of the anode containing micron-sized SnO particles has been confirmed by a detailed study using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). During initial discharge, the SnO changed to Sn and sodium oxide, and the surface of the electrode became covered with a film. The electrode composed of micron-sized SnO is a potential candidate for use in sodium-ion batteries.

2.
J Nanosci Nanotechnol ; 14(10): 7943-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942899

ABSTRACT

We synthesized two nickel sulfide powders by simple method. One is nickel sulfide powder (CNS) by co-precipitation is composed of nano-sized nickel sulfides as NiS and NIS2. The other is nickel sulfide powder (HNS) by heat-treatment of CNS is composed nano-sized NIS. The electrode using CNS has a high first discharge capacity of 600 mA h g(-1) at 0.5 C and the discharge capacity after 20th cycle is 312 mA h g(-1). The electrode using HNS has a high first discharge capacity of 551 mA h g(-1) at 0.5 C and has the discharge capacity of 412 mA h g(-1) after 50th. The discharge rate capability has over 92% at 1 C versus 0.2 C. The nano-sized nickel sulfides are synthesized by simple co-precipitation method has good electrochemical properties such as high first discharge capacity, good cycle life and good rate capability for lithium secondary battery.

3.
Nanoscale Res Lett ; 7(1): 73, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22230236

ABSTRACT

Cobalt oxide [Co3O4] anode materials were synthesized by a simple hydrothermal process, and the reaction conditions were optimized to provide good electrochemical properties. The effect of various synthetic reaction and heat treatment conditions on the structure and electrochemical properties of Co3O4 powder was also studied. Physical characterizations of Co3O4 are investigated by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller [BET] method. The BET surface area decreased with values at 131.8 m2/g, 76.1 m2/g, and 55.2 m2/g with the increasing calcination temperature at 200°C, 300°C, and 400°C, respectively. The Co3O4 particle calcinated at 200°C for 3 h has a higher surface area and uniform particle size distribution which may result in better sites to accommodate Li+ and electrical contact and to give a good electrochemical property. The cell composed of Super P as a carbon conductor shows better electrochemical properties than that composed of acetylene black. Among the samples prepared under different reaction conditions, Co3O4 prepared at 200°C for 10 h showed a better cycling performance than the other samples. It gave an initial discharge capacity of 1,330 mAh/g, decreased to 779 mAh/g after 10 cycles, and then showed a steady discharge capacity of 606 mAh/g after 60 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...