Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 43(3): 2059-2067, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34889900

ABSTRACT

A declined salivary gland function is commonly observed in elderly people. Advanced glycation end products (AGEs) are believed to contribute to the pathogenesis of aging. Although physical exercise is shown to increase various organ functions in human and experimental models, it is not known whether it has a similar effect in the salivary glands. In the present study, we evaluated the AGEs burden in the salivary gland in the aging process and the protective effect of physical exercise on age-related salivary hypofunction. To accelerate the aging process, rats were peritoneally injected with D-galactose for 6 weeks. Young control rats and d-galactose-induced aging rats in the old group were not exercised. The rats in the physical exercise group ran on a treadmill (12 m/min, 60 min/day, 3 days/week for 6 weeks). The results showed that the salivary flow rate and total protein levels in the saliva of the d-galactose-induced aging rats were reduced compared to those of the young control rats. Circulating AGEs in serum and secreted AGEs in saliva increased with d-galactose-induced aging. AGEs also accumulated in the salivary glands of these aging rats. The salivary gland of aging rats showed increased reactive oxygen species (ROS) generation, loss of acinar cells, and apoptosis compared to young control mice. However, physical exercise suppressed all of these age-related salivary changes. Overall, physical exercise could provide a beneficial option for age-related salivary hypofunction.


Subject(s)
Aging/metabolism , Galactose/metabolism , Glycation End Products, Advanced/metabolism , Salivary Glands/metabolism , Animals , Biomarkers , Glycation End Products, Advanced/blood , Physical Conditioning, Animal , Rats , Reactive Oxygen Species/metabolism , Salivary Glands/pathology , Salivary Glands/physiopathology , Salivation
2.
Pharmaceutics ; 14(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35056946

ABSTRACT

Polydatin (resveratrol-3-O-ß-mono-D-glucoside) is a polyphenol that can be easily accessed from peanuts, grapes, and red wine, and is known to have antiglycation, antioxidant, and anti-inflammatory effects. Diabetes mellitus is a very common disease, and diabetic complications are very common complications. The dry mouth symptom is one of the most common oral complaints in patients with diabetes mellitus. Diabetes mellitus is thought to promote hyposalivation. In this study, we aimed to investigate the improvement effect of polydatin on diabetes-induced hyposalivation in db/db mouse model of type 2 diabetes. We examined salivary flow rate, TUNEL assay, PAS staining, and immunohistochemical staining for AGEs, RAGE, HMGB1, 8-OHdG, and AQP5 to evaluate the efficacy of polydatin in the submandibular salivary gland. Diabetic db/db mice had a decreased salivary flow rate and salivary gland weight. The salivary gland of the vehicle-treated db/db mice showed an increased apoptotic cell injury. The AGEs were highly accumulated, and its receptor, RAGE expression was also enhanced. Expressions of HMGB1, an oxidative cell damage marker, and 8-OHdG, an oxidative DNA damage marker, increased greatly. However, polydatin ameliorated this hypofunction of the salivary gland and inhibited diabetes-related salivary cell injury. Furthermore, polydatin improved mucin accumulation, which is used as a damage marker for salivary gland acinar cells, and decreased expression of water channel AQP5 was improved by polydatin. In conclusion, polydatin has a potent protective effect on diabetes-related salivary gland hypofunction through its antioxidant and anti-glycation activities, and its AQP5 upregulation. This result suggests the possibility of the use of polydatin as a therapeutic drug to improve hyposalivation caused by diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...