Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1307688, 2024.
Article in English | MEDLINE | ID: mdl-38660218

ABSTRACT

Introduction: Visual fatigue resulting from sustained, high-workload visual activities can significantly impact task performance and general wellbeing. So far, however, little is known about the underlying brain networks of visual fatigue. This study aimed to identify such potential networks using a unique paradigm involving myopia-correcting lenses known to directly modulate subjectively-perceived fatigue levels. Methods: A sample of N = 31 myopia participants [right eye-SE: -3.77D (SD: 2.46); left eye-SE: -3.75D (SD: 2.45)] performed a demanding visual search task with varying difficulty levels, both with and without the lenses, while undergoing fMRI scanning. There were a total of 20 trials, after each of which participants rated the perceived difficulty and their subjective visual fatigue level. We used representational similarity analysis to decode brain regions associated with fatigue and difficulty, analyzing their individual and joint decoding pattern. Results and discussion: Behavioral results showed correlations between fatigue and difficulty ratings and above all a significant reduction in fatigue levels when wearing the lenses. Imaging results implicated the cuneus, lingual gyrus, middle occipital gyrus (MOG), and declive for joint fatigue and difficulty decoding. Parts of the lingual gyrus were able to selectively decode perceived difficulty. Importantly, a broader network of visual and higher-level association areas showed exclusive decodability of fatigue (culmen, middle temporal gyrus (MTG), parahippocampal gyrus, precentral gyrus, and precuneus). Our findings enhance our understanding of processing within the context of visual search, attention, and mental workload and for the first time demonstrate that it is possible to decode subjectively-perceived visual fatigue during a challenging task from imaging data. Furthermore, the study underscores the potential of myopia-correcting lenses in investigating and modulating fatigue.

2.
PLoS One ; 16(10): e0258441, 2021.
Article in English | MEDLINE | ID: mdl-34644337

ABSTRACT

The steady, world-wide increase in myopia prevalence in children over the past decades has raised concerns. As an early intervention for axial-length-related myopia, correcting lenses have been developed (such as Defocus Incorporated Multiple Segment (DIMS) lenses), which have been shown to be effective in slowing myopia progression. Beyond this direct effect, however, it is not known whether such lenses also affect other aspects important to the wearer, such as eye fatigue, and how such effects may differ across age, as these lenses so far are typically only tested with adolescents. In the present work, we therefore investigated perceived fatigue levels according to lens type (normal vs DIMS) and age (adolescents vs adults) in a demanding visual search task ("Finding Wally") at two difficulty levels (easy vs difficult). Whereas age and difficulty did not result in significant differences in eye fatigue, we found a clear reduction of fatigue levels in both age groups when wearing the correcting lenses. Hence, the additional accommodation of these lens types may result in less strain in a task requiring sustained eye movements at near viewing distances.


Subject(s)
Asthenopia/pathology , Eyeglasses/classification , Myopia/rehabilitation , Vision, Ocular/physiology , Adolescent , Adult , Asthenopia/etiology , Eyeglasses/adverse effects , Female , Humans , Male , Myopia/physiopathology , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...