Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 64(9): 1054-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25283003

ABSTRACT

In this study, variations of particulate matter (PM) concentrations in subway trains following installation of platform screen doors (PSDs) in the Seoul subway system were investigated. PM samples were collected in the trains on subway lines 1-8 before and after installation of PSDs. It was found that the mean PM10 concentration in the trains after PSDs installation increased significantly by 29.9% compared to that before installation. In particular, the increase of PM10 in line 6 was the highest at 103%. When the relationship between PM10 and PM2.5 was compared, coefficients of determination (r2) before and after PSDs installations were 0.696 and 0.169, respectively. This suggests that air mixing between the platform and the tunnel after PSDs installation was extremely restricted. In addition, the indoor/outdoor PM10 ratio following PSDs installation increased from 1.32 to 2.97 relative to the period with no installed PSDs. Furthermore, this study revealed that PM levels in subway trains increased significantly after all underground PSDs were put in use. Several potential factors were examined that could result in this PM increase, such as train ventilation systems, operational conditions, passenger volume, subway depth, and the length of underground segments. Implications: PM10 concentrations inside the subway trains increased after PSDs installation. This indicates that air quality in trains was very seriously impacted by PSDs. PM10 levels were also influenced by the tunnel depth and length of the underground segments. To prevent the adverse effect on human health by PM10 emitted from the tunnel, an applicable ventilation system to reduce PM10 is required inside trains and tunnels.


Subject(s)
Air Pollution, Indoor/prevention & control , Transportation , Air Pollutants/chemistry , Cities , Particulate Matter/chemistry , Republic of Korea
2.
Sci Total Environ ; 424: 271-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22444065

ABSTRACT

The relationship between noise and air pollution was investigated in eight different districts across Seoul, Korea, between September and November 2010. The noise levels in each district were measured at both roadside and non-roadside locations. It was found that the maximum levels of noise were generally at frequencies of around 1000 Hz. The equivalent noise levels (L(eq)), over all districts, averaged 61.4 ± 7.36 dB which is slightly lower than the noise guidelines set by the World Health Organization (WHO) of 70 dB for industrial, commercial, traffic, and outdoor areas. Comparison of L(eq) levels in each district consistently indicates that noise levels are higher at roadside sites than non-roadside sites. In addition the relative dominance of noise during daytime as compared to nighttime was also apparent. Moreover, the results of an analysis relating sound levels with air pollutant levels indicate strongly that the correlation between these two parameters is the strongest at roadside sites (relative to non-roadside sites) and during nighttime (relative to daytime). The results of our data analysis point to a positive, but complex, correlation between noise levels and air pollution.


Subject(s)
Air Pollutants/analysis , Environmental Exposure , Noise, Transportation , Noise , Vehicle Emissions/analysis , Cities , Environmental Monitoring , Republic of Korea , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...