Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 445: 138789, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38394911

ABSTRACT

We describe a simple and sensitive liquid-crystal (LC)-based method for quantifying carbendazim (CBZ) by exploiting aptamer-specific recognition at the aqueous-LC interface. The method relies on the interfacial interaction between an aptamer and cetyltrimethylammonium bromide (CTAB); this interaction varies depending on the amount of CBZ. In the absence of CBZ, the aptamer disrupts the CTAB monolayer through electrostatic attraction, leading to a transition from homeotropic to tilted ordering of the LCs. As CBZ concentrations rise, the formation of aptamer-CBZ complexes increases, preserving the vertical alignment of the LCs by reducing collapse of the CTAB layer caused by electrostatic interactions. Using these methods, we achieved a CBZ detection limit of 3.12 pM (0.000597 µg/L) over a linear range of 0.05-5 nM. Moreover, we quantified CBZ levels in peach, soil, and tap water samples. Our LC-based detection method has significant research potential, offering sensitive, and straightforward detection of CBZ.


Subject(s)
Aptamers, Nucleotide , Benzimidazoles , Biosensing Techniques , Carbamates , Liquid Crystals , Liquid Crystals/chemistry , Cetrimonium , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Water/chemistry
2.
Mikrochim Acta ; 191(1): 55, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38153588

ABSTRACT

Tumor necrosis factor-alpha (TNF-α) is a cytokine secreted by the macrophages and Th1 cells of the immune system in response to inflammation. Given its significance as a biomarker with elevated levels in physiological fluids in various conditions, there is an increasing demand for a simple and accurate TNF-α detection strategy. In this article, we present a liquid crystal (LC)-based biosensor developed for sensitive TNF-α detection. The biosensor operates as follows: TNF-α and detection antibodies (DAbs) form complexes during preincubation. These complexes then bind with the surface-immobilized capture antibodies (CAbs), facilitating the antigen-antibody reaction between the CAbs and the TNF-α/DAb complexes. This target recognition interaction alters the surface topography, disrupting the vertical orientation of LCs produced by dimethyloctadecyl[3-(trimethoxysilyl)-propyl]ammonium chloride. The orientational change in the LCs can be easily visualized with a polarized optical microscope, resulting in brighter images as TNF-α levels rise. Our results demonstrated a linear range of 5.00-500 pg/mL, with a limit of detection and limit of quantification being 1.08 and 3.56 pg/mL, respectively. Recovery experiments on diluted saliva samples produced reasonable results, with TNF-α recoveries ranging from 97.1% ± 2.58% to 107% ± 5.95%.


Subject(s)
Biosensing Techniques , Tumor Necrosis Factor-alpha , Antibodies , Antibodies, Immobilized , Cytokines , Liquid Crystals , Tumor Necrosis Factor-alpha/analysis , Humans
3.
Biotechnol Appl Biochem ; 70(6): 1972-1982, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37479671

ABSTRACT

We report here a liquid crystal (LC)-based sensor for detecting serotonin (5-HT); the proposed sensor uses target-specific aptamer recognition at a cationic surfactant decorated-aqueous/LC interface. Our detection strategy focuses on the orientational transition of LCs upon biological interactions at the interface. In this sensing system, the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) forms a self-assembled monolayer at the aqueous/LC interface and triggers the homeotropic orientation of LCs. After introducing the 5-HT specific aptamer, an electrostatic attraction occurs between the cationic CTAB and anionic aptamer. This interaction destructs the surfactant monolayer at the interface, inducing reorganization of LC alignment from homeotropic to tilted conditions. In the increasing 5-HT levels, specific binding between 5-HT and the aptamer diminishes the interaction between the aptamer and CTAB, thereby maintaining the homeotropic alignment of LCs. The orientational transition of the LCs was observed under a polarized optical microscope. The developed biosensor has a linear detection range from 1 to 1000 nM and a detection limit of 1.68 nM. Moreover, the sensor was applied to a human urine sample and a detection limit of 2.25 nM was obtained. Overall, the designed LC-based sensor is a sensitive, simple, cost effective, and selective platform for detecting 5-HT in aqueous solutions.


Subject(s)
Biosensing Techniques , Liquid Crystals , Humans , Serotonin , Liquid Crystals/chemistry , Cetrimonium , Surface-Active Agents/chemistry , Oligonucleotides , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...