Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7204, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504925

ABSTRACT

To learn spatiotemporal representations and anomaly predictions from geophysical data, we propose STANet, a spatiotemporal neural network with a trainable attention mechanism, and apply it to El Niño predictions for long-lead forecasts. The STANet makes two critical architectural improvements: it learns spatial features globally by expanding the network's receptive field and encodes long-term sequential features with visual attention using a stateful long-short term memory network. The STANet conducts multitask learning of Nino3.4 index prediction and calendar month classification for predicted indices. In a comparison of the proposed STANet performance with the state-of-the-art model, the accuracy of the 12-month forecast lead correlation coefficient was improved by 5.8% and 13% for Nino3.4 index prediction and corresponding temporal classification, respectively. Furthermore, the spatially attentive regions for the strong El Niño events displayed spatial relationships consistent with the revealed precursor for El Niño occurrence, indicating that the proposed STANet provides good understanding of the spatiotemporal behavior of global sea surface temperature and oceanic heat content for El Niño evolution.


Subject(s)
El Nino-Southern Oscillation , Neural Networks, Computer , Forecasting , Learning
2.
Sci Rep ; 11(1): 21776, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34741087

ABSTRACT

Accurate water surface elevation estimation is essential for understanding nearshore processes, but it is still challenging due to limitations in measuring water level using in-situ acoustic sensors. This paper presents a vision-based water surface elevation estimation approach using multi-view datasets. Specifically, we propose a visual domain adaptation method to build a water level estimator in spite of a situation in which ocean wave height cannot be measured directly. We also implemented a semi-supervised approach to extract wave height information from long-term sequences of wave height observations with minimal supervision. We performed wave flume experiments in a hydraulic laboratory with two cameras with side and top viewpoints to validate the effectiveness of our approach. The performance of the proposed models were evaluated by comparing the estimated time series of water elevation with the ground-truth wave gauge data at three locations along the wave flume. The estimated time series were in good agreement within the averaged correlation coefficient of 0.98 and 0.90 on the measurement and 0.95 and 0.85 on the estimation for regular and irregular waves, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...