Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 04 27.
Article in English | MEDLINE | ID: mdl-35476036

ABSTRACT

ADP-ribosylation (ADPRylation) is a reversible post-translation modification resulting in the covalent attachment of ADP-ribose (ADPR) moieties on substrate proteins. Naturally occurring protein motifs and domains, including WWEs, PBZs, and macrodomains, act as 'readers' for protein-linked ADPR. Although recombinant, antibody-like ADPR detection reagents containing these readers have facilitated the detection of ADPR, they are limited in their ability to capture the dynamic nature of ADPRylation. Herein, we describe and characterize a set of poly(ADP-ribose) (PAR) Trackers (PAR-Ts)-optimized dimerization-dependent or split-protein reassembly PAR sensors in which a naturally occurring PAR binding domain, WWE, was fused to both halves of dimerization-dependent GFP (ddGFP) or split Nano Luciferase (NanoLuc), respectively. We demonstrate that these new tools allow the detection and quantification of PAR levels in extracts, living cells, and living tissues with greater sensitivity, as well as temporal and spatial precision. Importantly, these sensors detect changes in cellular ADPR levels in response to physiological cues (e.g., hormone-dependent induction of adipogenesis without DNA damage), as well as xenograft tumor tissues in living mice. Our results indicate that PAR Trackers have broad utility for detecting ADPR in many different experimental and biological systems.


Subject(s)
Adenosine Diphosphate Ribose , Poly Adenosine Diphosphate Ribose , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Animals , DNA Damage , Humans , Mice , Poly Adenosine Diphosphate Ribose/chemistry , Poly Adenosine Diphosphate Ribose/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Recombinant Proteins/metabolism
2.
Cell ; 184(17): 4531-4546.e26, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314702

ABSTRACT

Defects in translation lead to changes in the expression of proteins that can serve as drivers of cancer formation. Here, we show that cytosolic NAD+ synthesis plays an essential role in ovarian cancer by regulating translation and maintaining protein homeostasis. Expression of NMNAT-2, a cytosolic NAD+ synthase, is highly upregulated in ovarian cancers. NMNAT-2 supports the catalytic activity of the mono(ADP-ribosyl) transferase (MART) PARP-16, which mono(ADP-ribosyl)ates (MARylates) ribosomal proteins. Depletion of NMNAT-2 or PARP-16 leads to inhibition of MARylation, increased polysome association and enhanced translation of specific mRNAs, aggregation of their translated protein products, and reduced growth of ovarian cancer cells. Furthermore, MARylation of the ribosomal proteins, such as RPL24 and RPS6, inhibits polysome assembly by stabilizing eIF6 binding to ribosomes. Collectively, our results demonstrate that ribosome MARylation promotes protein homeostasis in cancers by fine-tuning the levels of protein synthesis and preventing toxic protein aggregation.


Subject(s)
ADP-Ribosylation , Ovarian Neoplasms/metabolism , Protein Biosynthesis , Proteostasis , Ribosomes/metabolism , 3' Untranslated Regions/genetics , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Endoplasmic Reticulum Stress , Fallopian Tubes/metabolism , Female , Humans , Mice, Inbred NOD , Mice, SCID , NAD/metabolism , Nicotinamide-Nucleotide Adenylyltransferase , Nucleic Acid Conformation , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerases/metabolism , Polyribosomes/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...