Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 10(3): 221-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25705867

ABSTRACT

The operation of racetrack memories is based on the motion of domain walls in atomically thin, perpendicularly magnetized nanowires, which are interfaced with adjacent metal layers with high spin-orbit coupling. Such domain walls have a chiral Néel structure and can be moved efficiently by electrical currents. High-capacity racetrack memory requires closely packed domain walls, but their density is limited by dipolar coupling from their fringing magnetic fields. These fields can be eliminated using a synthetic antiferromagnetic structure composed of two magnetic sub-layers, exchange-coupled via an ultrathin antiferromagnetic-coupling spacer layer. Here, we show that nanosecond-long current pulses can move domain walls in synthetic antiferromagnetic racetracks that have almost zero net magnetization. The domain walls can be moved even more efficiently and at much higher speeds (up to ∼750 m s(-1)) compared with similar racetracks in which the sub-layers are coupled ferromagnetically. This is due to a stabilization of the Néel domain wall structure, and an exchange coupling torque that is directly proportional to the strength of the antiferromagnetic exchange coupling between the two sub-layers. Moreover, the dependence of the wall velocity on the magnetic field applied along the nanowire is distinct from that of the single-layer racetrack due to the exchange coupling torque. The high domain wall velocities in racetracks that have no net magnetization allow for densely packed yet highly efficient domain-wall-based spintronics.

2.
Nano Lett ; 15(2): 835-41, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25584482

ABSTRACT

We demonstrate a highly efficient and simple scheme for injecting domain walls into magnetic nanowires. The spin transfer torque from nanosecond long, unipolar, current pulses that cross a 90° magnetization boundary together with the fringing magnetic fields inherently prevalent at the boundary, allow for the injection of single or a continual stream of domain walls. Remarkably, the currents needed for this "in-line" domain wall injection scheme are at least one hundred times smaller than conventional methods.

3.
Nat Commun ; 5: 3910, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24852680

ABSTRACT

Domain walls can be driven by current at very high speeds in nanowires formed from ultra-thin, perpendicularly magnetized cobalt layers and cobalt/nickel multilayers deposited on platinum underlayers due to a chiral spin torque. An important feature of this torque is a magnetic chiral exchange field that each domain wall senses and that can be measured by the applied magnetic field amplitude along the nanowire where the domain walls stop moving irrespective of the magnitude of the current. Here we show that this torque is manifested when the magnetic layer is interfaced with metals that display a large proximity-induced magnetization, including iridium, palladium and platinum but not gold. A correlation between the strength of the chiral spin torque and the proximity-induced magnetic moment is demonstrated by interface engineering using atomically thin dusting layers. High domain velocities are found where there are large proximity-induced magnetizations in the interfaced metal layers.

4.
Nat Nanotechnol ; 8(7): 527-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23770808

ABSTRACT

Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices.

5.
Ultramicroscopy ; 108(10): 1066-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18562110

ABSTRACT

We present a systematic change of the magnetic domain structure with temperature in epitaxial ferromagnetic MnAs film on GaAs (001), observed in a wide temperature range of 15-45 degrees C by magnetic force microscopy. Interestingly, it is found that, as temperature increases, the domain structure within the ferromagnetic alpha-MnAs stripes shows a mixture of head-on and simple domains at 15 degrees C and then, takes a complete transition to simple ones above 15 degrees C. This change could be understood by change in the demagnetizing factor of the cross-section of the ferromagnetic stripes with temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...