Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 1957, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386549

ABSTRACT

Nonhuman primates are important animal models in transplantation. To prevent fatal transplantation-induced immune responses, it is necessary to accurately phenotype the monkey ABH antigens, which are the same as those in humans but (unlike in humans) are not expressed on red blood cells (RBCs). We compared the ability of two established ABO-typing methods, namely, serological testing and immunohistochemistry (IHC), and our novel polymerase chain reaction (PCR)-based assay to type 66 rhesus monkeys. The serological test assessed the ability of monkey sera to hemagglutinate human RBCs. The IHC assay measured the binding of murine anti-A and anti-B antibodies to monkey buccal mucosa cells. The whole blood-based PCR assay involved selective primers that were derived from the exon 7 sequences of A+, B+, and O+ monkeys. IHC and PCR unequivocally yielded the same types in all monkeys. Serological testing yielded inconsistent types in seven (10.6%). FACS analysis with monkey sera preabsorbed with O+ RBCs showed that the incorrect serological results related to nonspecific or xenoreactive binding of the human RBCs. Unlike previous PCR-based assay, our algorithm directly detected O+ monkeys and A and B homozygotes and heterozygotes. Given the logistical limitations of IHC, this PCR assay may be useful for typing rhesus monkeys.


Subject(s)
ABO Blood-Group System/genetics , Blood Grouping and Crossmatching/methods , DNA Primers/metabolism , Polymerase Chain Reaction/methods , Alleles , Animals , Female , Flow Cytometry , Hemagglutination , Immunohistochemistry , Macaca mulatta , Male , Mouth Mucosa/cytology , Phenotype , Serotyping
2.
Tissue Eng Regen Med ; 15(5): 629-638, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30603584

ABSTRACT

BACKGROUND: Skin grafts are required in numerous clinical procedures, such as reconstruction after skin removal and correction of contracture or scarring after severe skin loss caused by burns, accidents, and trauma. The current standard for skin defect replacement procedures is the use of autologous skin grafts. However, donor-site tissue availability remains a major obstacle for the successful replacement of skin defects and often limits this option. The aim of this study is to effectively expand full thickness skin to clinically useful size using an automated skin reactor and evaluate auto grafting efficiency of the expanded skin using Yucatan female pigs. METHODS: We developed an automated bioreactor system with the functions of real-time monitoring and remote-control, optimization of grip, and induction of skin porosity for effective tissue expansion. We evaluated the morphological, ultra-structural, and mechanical properties of the expanded skin before and after expansion using histology, immunohistochemistry, and tensile testing. We further carried out in vivo grafting study using Yucatan pigs to investigate the feasibility of this method in clinical application. RESULTS: The results showed an average expansion rate of 180%. The histological findings indicated that external expansion stimulated cellular activity in the isolated skin and resulted in successful grafting to the transplanted site. Specifically, hyperplasia did not appear at the auto-grafted site, and grafted skin appeared similar to normal skin. Furthermore, mechanical stimuli resulted in an increase in COL1A2 expression in a suitable environment. CONCLUSIONS: These findings provided insight on the potential of this expansion system in promoting dermal extracellular matrix synthesis in vitro. Conclusively, this newly developed smart skin bioreactor enabled effective skin expansion ex vivo and successful grafting in vivo in a pig model.

3.
Exp Neurobiol ; 27(6): 453-471, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30636899

ABSTRACT

A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.

4.
Lab Anim Res ; 27(2): 109-16, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21826170

ABSTRACT

To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA.

5.
Biochem Biophys Res Commun ; 408(4): 559-65, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21521635

ABSTRACT

We have successfully isolated a novel anoctamin (xANO2), Ca(2+)-activated chloride channel (ANO1, TMEM16A), from Xenopus laevis. The cDNA sequence was determined to belong to the anoctamin family by comparison with the xTMEM16A sequence in a previous report. Full length cDNA synthesis was performed by repeating 5'- and 3'-rapid amplification of cDNA end (RACE). We successfully completed the entire cDNA sequence and transiently named this sequence xANO2. The xANO2 cDNA is 3884 base pair (bp) long and codes 980 amino acid (aa) proteins. According to an aa homology search using the Basic Local Alignment Search Tool (BLAST), xANO2 showed an overall identity of 92% to xTMEM16A (xANO1) independently sub-cloned in our laboratory. A primary sequence of xANO2 revealed typical characteristics of transmembrane proteins. In tissue distribution analysis, the gene products of anoctamins were ubiquitously detected by real-time PCR (RT-PCR). The expression profiles of each anoctamin were different among brain, oocytes, and digestive organs with relatively weak expression. To clarify the anoctamin activity, physiological studies were performed using the whole cell patch-clamp technique with HEK293T cells, enhanced green fluorescent protein (EGFP), and expression vectors carrying anoctamins. Characteristics typical of voltage-dependent chloride currents were detected in cells expressing both xANO2 and xTMEM16A but not with EGFP alone. Sensitive reactions to the anion channel blocker niflumic acid (NFA) were also revealed. Considering these results, xANO2 was regarded as a new TMEM16A belonging to the Xenopus anoctamin family.


Subject(s)
Chloride Channels/genetics , Xenopus laevis/genetics , Amino Acid Sequence , Animals , Chloride Channels/chemistry , Cloning, Molecular , Gene Expression , Molecular Sequence Data , Protein Conformation , Xenopus Proteins/chemistry , Xenopus Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...