Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236139

ABSTRACT

In this study, a simple method for preparing direct-writable and thermally one-step curable epoxy composite inks was proposed. Specifically, colloidal inks containing a mixture of ordinary epoxy resin and anhydride-type hardener with the suspended alumina microplates, as exemplary fillers, are "stained" with small amounts of water. This increases the elasticity of the ink via the interparticle capillary attraction and promotes curing of the epoxy matrix in low-temperature ranges, causing the three-dimensional (3D) printed ink to avoid structural disruption during one-step thermal curing without the tedious pre-curing step. The proposed mechanisms for the shape retention of thermally cured water-stained inks were discussed with thorough analyses using shear rheometry, DSC, FTIR, and SEM. Results of the computer-vision numerical analysis of the SEM images reveal that the particles in water-stained inks are oriented more in the vertical direction than those in water-free samples, corroborating the proposed mechanisms. The suggested concept is extremely simple and does not require any additional cost to the one required for the preparation of the common epoxy-filler composites, which is thus expected to be well-exploited in various applications where 3D printing of epoxy-based formulations is necessary.

2.
RSC Adv ; 11(11): 6201-6211, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-35423145

ABSTRACT

MXenes, a new class of 2D materials, have recently attracted increasing attention as promising adsorbents for environmental remediation. It has been previously demonstrated that MXenes can successfully capture selected organic dyes from aqueous media; however, to date, the adsorption performance of MXenes for a wide variety of dyes in simulated real-life aquatic environments other than clean laboratory deionized (DI) water has not been systematically investigated. In this study, we systematically investigated the adsorption performance of delaminated Ti3C2-MXenes for six different organic dyes in aquatic media at different pH levels and ionic strengths. Our results strongly suggest the importance of the electrostatic interactions between the ionizable functional groups of MXenes and dyes for removal efficiency. The electrostatic repulsions between negatively charged MXenes and certain anionic dyes reduced the removal efficiencies of MXenes for these dyes in DI water; however, the presence of divalent cations significantly improved the removal efficiencies, possibly owing to the charge screening effects and like-charge attractions mediated by cation binding to the functionalities of dyes and MXenes. These results provide a rational strategy for optimizing the conditions for efficient removal of different types of organic dyes using MXenes.

3.
ACS Appl Mater Interfaces ; 12(45): 51092-51101, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33108175

ABSTRACT

Phase change materials (PCMs) have received considerable attention for various latent heat storage systems for efficient thermal energy utilization. Herein, a facile and fast method for the bulk nanoencapsulation of organic PCMs is proposed, based on the thermodynamically spontaneous spreading phenomenon of three immiscible liquid phases. In this approach, a complete engulfing of PCM nanodroplets (core phase) by immiscible prepolymer droplets (coating phase), both of which are bulk-dispersed in another immiscible medium (continuous phase), is thermodynamically driven by the relation between the surface energies of the core, coating, and continuous phases. To demonstrate the proposed method, melted n-docosane (PCM, core phase) nanodroplets are completely engulfed within a couple of minutes by immiscible polyethylene glycol diacrylate (PEGDA, coating phase) in an aqueous poly(vinyl alcohol) solution (continuous phase), and the PEGDA layer quickly cross-linked upon UV irradiation to form a rigid shell protecting the PCM core. As-produced PCM nanocapsules display promising heat storage and release performances as well as high durability in repeated heating-cooling cycles in both dry and wet states. The proposed process may serve as a useful platform for bulk production of PCM nanocapsules with various core and shell compositions in a facile, fast, and scalable way.

4.
RSC Adv ; 10(43): 25966-25978, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-35518610

ABSTRACT

MXenes, an emerging class of two-dimensional materials, are recently gaining significant attention for numerous environmental applications owing to their superior hydrophilicity and unique surface functionalities, which are suitable for adsorptive removal of various aqueous contaminants. However, it has recently been shown that MXenes have poor colloidal stability in both synthetic or natural waters containing small amounts of salt ions, which will limit the potential uses of MXenes in remediation of subsurface environments that might sometimes contain considerable amounts of salt ions, and other relevant environmental applications. Herein, we develop Ti3C2-MXenes grafted with highly salt-resistant polyelectrolytes (PEs), MXene-g-PEs, which are colloidally stable in extreme salinity aquatic environments and have low adsorption to soil mineral substrates. The MXenes grafted with zwitterionic PEs are found to have superior mobility properties to those with anionic PEs, which are attributed to the anti-PE behavior of the grafted polymer brushes. The MXene-g-(zwitterionic) PEs show long-term colloidal stability over 6 months in American Petroleum Institute (API) brine with extreme salinity (ionic strength of 2 M with 182.2 mM Ca2+), and little adsorption (0.5 mg m-2) against α-alumina surfaces (2.3 m2 g-1). Furthermore, the MXene-g-PEs retained the excellent adsorption capacity for methylene blue as a model aqueous organic pollutant. The results suggest the great potential of the MXene-g-PEs as an aqueous pollutant scavenger for various environmental applications including the combined ex situ/in situ remediation, and other relevant subsurface applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...