Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
2.
Curr Biol ; 34(7): 1519-1531.e4, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38531360

ABSTRACT

How are we able to learn new behaviors without disrupting previously learned ones? To understand how the brain achieves this, we used a brain-computer interface (BCI) learning paradigm, which enables us to detect the presence of a memory of one behavior while performing another. We found that learning to use a new BCI map altered the neural activity that monkeys produced when they returned to using a familiar BCI map in a way that was specific to the learning experience. That is, learning left a "memory trace" in the primary motor cortex. This memory trace coexisted with proficient performance under the familiar map, primarily by altering neural activity in dimensions that did not impact behavior. Forming memory traces might be how the brain is able to provide for the joint learning of multiple behaviors without interference.


Subject(s)
Brain-Computer Interfaces , Motor Cortex , Learning , Brain , Brain Mapping , Electroencephalography
3.
Global Spine J ; : 21925682231224394, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165219

ABSTRACT

STUDY DESIGN: Cadaveric study. OBJECTIVES: The purpose of this study was to compare a novel, integrated 3D navigational system (NAV) and conventional fluoroscopy in the accuracy, efficiency, and radiation exposure of thoracolumbar percutaneous pedicle screw (PPS) placement. METHODS: Twelve skeletally mature cadaveric specimens were obtained for twelve individual surgeons. Each participant placed bilateral PS at 11 segments, from T8 to S1. Prior to insertion, surgeons were randomized to the sequence of techniques and the side (left or right). Following placement, a CT scan of the spine was obtained for each cadaver, and an independent reviewer assessed the accuracy of screw placement using the Gertzbein grading system. Outcome metrics of interest included a comparison of breach incidence/severity, screw placement time, total procedure time, and radiation exposure between the techniques. Bivariate statistics were employed to compare outcomes at each level. RESULTS: A total of 262 screws (131 using each technique) were placed. The incidence of cortical breaches was significantly lower with NAV compared to FG (9% vs 18%; P = .048). Of breaches with NAV, 25% were graded as moderate or severe compared to 39% in the FG subgroup (P = .034). Median time for screw placement was significantly lower with NAV (2.7 vs 4.1 min/screw; P = .012), exclusive of registration time. Cumulative radiation exposure to the surgeon was significantly lower for NAV-guided placement (9.4 vs 134 µGy, P = .02). CONCLUSIONS: The use of NAV significantly decreased the incidence of cortical breaches, the severity of screw breeches, screw placement time, and radiation exposure to the surgeon when compared to traditional FG.

5.
Nature ; 602(7896): 274-279, 2022 02.
Article in English | MEDLINE | ID: mdl-35082444

ABSTRACT

The brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 in a curl force field that elicited new muscle forces for some, but not all, movement directions2,3. We found that in a neural subspace predictive of hand forces, changes in preparatory activity tracked the learned behavioural modifications and reassociated4 existing activity patterns with updated movements. Along a neural population dimension orthogonal to the force-predictive subspace, we discovered that preparatory activity shifted uniformly for all movement directions, including those unaltered by learning. During a washout period when the curl field was removed, preparatory activity gradually reverted in the force-predictive subspace, but the uniform shift persisted. These persistent preparatory activity patterns may retain a motor memory of the learned field5,6 and support accelerated relearning of the same curl field. When a set of distinct curl fields was learned in sequence, we observed a corresponding set of field-specific uniform shifts which separated the associated motor memories in the neural state space7-9. The precise geometry of these uniform shifts in preparatory activity could serve to index motor memories, facilitating the acquisition, retention and retrieval of a broad motor repertoire.


Subject(s)
Learning , Motor Cortex , Motor Skills , Animals , Learning/physiology , Macaca mulatta/physiology , Motor Cortex/physiology , Motor Skills/physiology , Movement/physiology , Muscle, Skeletal/physiology
6.
Nat Commun ; 12(1): 3689, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140486

ABSTRACT

Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.


Subject(s)
Brain-Computer Interfaces , Calcium/metabolism , Dendrites/physiology , Intravital Microscopy/instrumentation , Intravital Microscopy/methods , Motor Cortex/diagnostic imaging , Multimodal Imaging/methods , Animals , Calcium-Binding Proteins/metabolism , Dendrites/metabolism , Green Fluorescent Proteins/metabolism , Implants, Experimental , Macaca mulatta , Male , Models, Neurological , Motor Activity/physiology , Motor Cortex/physiology , Neurons/physiology , Photons
7.
Nat Neurosci ; 24(5): 727-736, 2021 05.
Article in English | MEDLINE | ID: mdl-33782622

ABSTRACT

Internal states such as arousal, attention and motivation modulate brain-wide neural activity, but how these processes interact with learning is not well understood. During learning, the brain modifies its neural activity to improve behavior. How do internal states affect this process? Using a brain-computer interface learning paradigm in monkeys, we identified large, abrupt fluctuations in neural population activity in motor cortex indicative of arousal-like internal state changes, which we term 'neural engagement.' In a brain-computer interface, the causal relationship between neural activity and behavior is known, allowing us to understand how neural engagement impacted behavioral performance for different task goals. We observed stereotyped changes in neural engagement that occurred regardless of how they impacted performance. This allowed us to predict how quickly different task goals were learned. These results suggest that changes in internal states, even those seemingly unrelated to goal-seeking behavior, can systematically influence how behavior improves with learning.


Subject(s)
Action Potentials/physiology , Brain-Computer Interfaces , Learning/physiology , Motor Cortex/physiology , Neurons/physiology , Animals , Attention/physiology , Macaca mulatta , Male
8.
Nature ; 591(7851): 604-609, 2021 03.
Article in English | MEDLINE | ID: mdl-33473215

ABSTRACT

In dynamic environments, subjects often integrate multiple samples of a signal and combine them to reach a categorical judgment1. The process of deliberation can be described by a time-varying decision variable (DV), decoded from neural population activity, that predicts a subject's upcoming decision2. Within single trials, however, there are large moment-to-moment fluctuations in the DV, the behavioural significance of which is unclear. Here, using real-time, neural feedback control of stimulus duration, we show that within-trial DV fluctuations, decoded from motor cortex, are tightly linked to decision state in macaques, predicting behavioural choices substantially better than the condition-averaged DV or the visual stimulus alone. Furthermore, robust changes in DV sign have the statistical regularities expected from behavioural studies of changes of mind3. Probing the decision process on single trials with weak stimulus pulses, we find evidence for time-varying absorbing decision bounds, enabling us to distinguish between specific models of decision making.


Subject(s)
Decision Making/physiology , Models, Neurological , Animals , Choice Behavior/physiology , Discrimination, Psychological , Judgment , Macaca/physiology , Motion , Motion Perception , Photic Stimulation , Time Factors
9.
Molecules ; 25(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153210

ABSTRACT

Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants are poorly known, the present study reports detailed compound lipid composition, focusing on phospholipids and galactolipids in the latex and rubber particles of the plants. In the fresh latex and rubber particles of both plants, phospholipids were much more dominant (85-99%) compared to galactolipids. Among the nine classes of phospholipids, phosphatidylcholines (PCs) were most abundant, at ~80%, in both plants. Among PCs, PC (36:4) and PC (34:2) were most abundant in the rubber tree and rubber dandelion, respectively. Two classes of galactolipids, monogalactosyl diacylglycerol and digalactosyl diacylglycerol, were detected as 12% and 1%, respectively, of total compound lipids in rubber tree, whereas their percentages in the rubber dandelion were negligible (< 1%). Overall, the compound lipid composition differed only slightly between the fresh latex and the rubber particles of both rubber plants. These results provide fundamental data on the lipid composition of rubber particles in two rubber-producing plants, which can serve as a basis for artificial rubber particle production in the future.


Subject(s)
Hevea/chemistry , Latex/chemistry , Lipids/chemistry , Taraxacum/chemistry
11.
Cell Rep ; 32(6): 108006, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783934

ABSTRACT

In multiple cortical areas, including the motor cortex, neurons have similar firing rate statistics whether we observe or execute movements. These "congruent" neurons are hypothesized to support action understanding by participating in a neural circuit consistently activated in both observed and executed movements. We examined this hypothesis by analyzing neural population structure and dynamics between observed and executed movements. We find that observed and executed movements exhibit similar neural population covariation in a shared subspace capturing significant neural variance. Further, neural dynamics are more similar between observed and executed movements within the shared subspace than outside it. Finally, we find that this shared subspace has a heterogeneous composition of congruent and incongruent neurons. Together, these results argue that similar neural covariation and dynamics between observed and executed movements do not occur via activation of a subpopulation of congruent single neurons, but through consistent temporal activation of a heterogeneous neural population.


Subject(s)
Motor Cortex/physiology , Neurons/physiology , Animals , Macaca mulatta
12.
Sci Rep ; 10(1): 10844, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616731

ABSTRACT

Hevea brasiliensis, the most abundant rubber crop, is used widely for the commercial production of natural rubber. To reduce the risk of a shortage in the supply of natural rubber that may arise from a single major rubber crop, rubber dandelion (Taraxacum kok-saghyz) has been developed as an alternative rubber-producing crop by using a transgenic approach. However, it is necessary to identify a suitable promoter for the transfer of rubber biosynthesis-related genes to the species. In this study, the promoter region of H. brasiliensis PEP16, which was isolated as a potentially important component in rubber biosynthesis, was sequenced and a pPEP16::GUS fusion construct was introduced into T. kok-saghyz. Histological and fluorometric studies using transgenic T. kok-saghyz plants indicated that the HbPEP16 promoter was highly activated in a laticiferous tissue-specific manner under normal growth conditions and that promoter activation was tightly regulated by various hormones and external signals. These findings suggested that the HbPEP16 promoter may be a useful molecular tool for the manipulation of gene expression in the laticiferous tissues of T. kok-saghyz.


Subject(s)
Gene Expression Regulation, Plant , Hevea/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Rubber/metabolism , Taraxacum/metabolism , Hevea/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Taraxacum/genetics , Taraxacum/growth & development
13.
Neuron ; 106(2): 329-339.e4, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32053768

ABSTRACT

Current theories suggest that an error-driven learning process updates trial-by-trial to facilitate motor adaptation. How this process interacts with motor cortical preparatory activity-which current models suggest plays a critical role in movement initiation-remains unknown. Here, we evaluated the role of motor preparation during visuomotor adaptation. We found that preparation time was inversely correlated to variance of errors on current trials and mean error on subsequent trials. We also found causal evidence that intracortical microstimulation during motor preparation was sufficient to disrupt learning. Surprisingly, stimulation did not affect current trials, but instead disrupted the update computation of a learning process, thereby affecting subsequent trials. This is consistent with a Bayesian estimation framework where the motor system reduces its learning rate by virtue of lowering error sensitivity when faced with uncertainty. This interaction between motor preparation and the error-driven learning system may facilitate new probes into mechanisms underlying trial-by-trial adaptation.


Subject(s)
Anticipation, Psychological/physiology , Learning/physiology , Adaptation, Psychological , Animals , Bayes Theorem , Brain Mapping , Cerebral Cortex/physiology , Electric Stimulation , Macaca mulatta , Photic Stimulation , Psychomotor Performance/physiology
14.
Neuron ; 105(2): 246-259.e8, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31786013

ABSTRACT

Though the temporal precision of neural computation has been studied intensively, a data-driven determination of this precision remains a fundamental challenge. Reproducible spike patterns may be obscured on single trials by uncontrolled temporal variability in behavior and cognition and may not be time locked to measurable signatures in behavior or local field potentials (LFP). To overcome these challenges, we describe a general-purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled from behavior or are temporally stretched across single trials. We demonstrate this method across diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and olfaction in mice. This approach flexibly uncovers diverse dynamical firing patterns, including pulsatile responses to behavioral events, LFP-aligned oscillatory spiking, and even unanticipated patterns, such as 7 Hz oscillations in rat motor cortex that are not time locked to measured behaviors or LFP.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Pattern Recognition, Automated/methods , Amyloid beta-Protein Precursor/genetics , Animals , Gene Knock-In Techniques , Macaca mulatta , Male , Mice , Mice, Transgenic , Microinjections , Motor Cortex/physiology , Peptide Fragments/genetics , Primary Cell Culture , Proteins/genetics , Rats , Time Factors
16.
Neuron ; 103(2): 292-308.e4, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31171448

ABSTRACT

A central goal of systems neuroscience is to relate an organism's neural activity to behavior. Neural population analyses often reduce the data dimensionality to focus on relevant activity patterns. A major hurdle to data analysis is spike sorting, and this problem is growing as the number of recorded neurons increases. Here, we investigate whether spike sorting is necessary to estimate neural population dynamics. The theory of random projections suggests that we can accurately estimate the geometry of low-dimensional manifolds from a small number of linear projections of the data. We recorded data using Neuropixels probes in motor cortex of nonhuman primates and reanalyzed data from three previous studies and found that neural dynamics and scientific conclusions are quite similar using multiunit threshold crossings rather than sorted neurons. This finding unlocks existing data for new analyses and informs the design and use of new electrode arrays for laboratory and clinical use.


Subject(s)
Action Potentials/physiology , Models, Neurological , Motor Cortex/cytology , Neurons/physiology , Nonlinear Dynamics , Algorithms , Animals , Computer Simulation , Macaca mulatta , Male
17.
Nat Commun ; 10(1): 2718, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31221968

ABSTRACT

Motor preparation typically precedes movement and is thought to determine properties of upcoming movements. However, preparation has mostly been studied in point-to-point delayed reaching tasks. Here, we ask whether preparation is engaged during mid-reach modifications. Monkeys reach to targets that occasionally jump locations prior to movement onset, requiring a mid-reach correction. In motor cortex and dorsal premotor cortex, we find that the neural activity that signals when to reach predicts monkeys' jump responses on a trial-by-trial basis. We further identify neural patterns that signal where to reach, either during motor preparation or during motor execution. After a target jump, neural activity responds in both preparatory and movement-related dimensions, even though error in preparatory dimensions can be small at that time. This suggests that the same preparatory process used in delayed reaching is also involved in reach correction. Furthermore, it indicates that motor preparation and execution can be performed simultaneously.


Subject(s)
Motor Cortex/physiology , Movement/physiology , Psychomotor Performance/physiology , Animals , Behavior Observation Techniques , Behavior, Animal/physiology , Electrodes, Implanted , Macaca mulatta , Male , Models, Biological , Neurons/physiology , Reaction Time/physiology , Time Factors
18.
Plant Biotechnol J ; 17(11): 2041-2061, 2019 11.
Article in English | MEDLINE | ID: mdl-31150158

ABSTRACT

Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.


Subject(s)
Hevea/enzymology , Metabolic Engineering , Rubber/metabolism , Transferases/genetics
19.
Sci Rep ; 9(1): 5528, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30918269

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

20.
PLoS Comput Biol ; 15(2): e1006808, 2019 02.
Article in English | MEDLINE | ID: mdl-30794541

ABSTRACT

Voluntary movements are widely considered to be planned before they are executed. Recent studies have hypothesized that neural activity in motor cortex during preparation acts as an 'initial condition' which seeds the proceeding neural dynamics. Here, we studied these initial conditions in detail by investigating 1) the organization of neural states for different reaches and 2) the variance of these neural states from trial to trial. We examined population-level responses in macaque premotor cortex (PMd) during the preparatory stage of an instructed-delay center-out reaching task with dense target configurations. We found that after target onset the neural activity on single trials converges to neural states that have a clear low-dimensional structure which is organized by both the reach endpoint and maximum speed of the following reach. Further, we found that variability of the neural states during preparation resembles the spatial variability of reaches made in the absence of visual feedback: there is less variability in direction than distance in neural state space. We also used offline decoding to understand the implications of this neural population structure for brain-machine interfaces (BMIs). We found that decoding of angle between reaches is dependent on reach distance, while decoding of arc-length is independent. Thus, it might be more appropriate to quantify decoding performance for discrete BMIs by using arc-length between reach end-points rather than the angle between them. Lastly, we show that in contrast to the common notion that direction can better be decoded than distance, their decoding capabilities are comparable. These results provide new insights into the dynamical neural processes that underline motor control and can inform the design of BMIs.


Subject(s)
Motor Cortex/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Animals , Electrodes, Implanted , Electromyography , Macaca mulatta/physiology , Motor Cortex/metabolism , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...