Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 8(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35877528

ABSTRACT

In this work, the synthesis of ordered mesoporous silica of MCM-41 type was investigated aimed at improving its morphology by varying the synthesis conditions in a one-pot process, employing different temperatures and solvent conditions. 2-methoxyethanol was used as co-solvent to ethanol. The co-solvent ratio and the synthesis temperature were varied. The pore morphology of the materials was characterized by nitrogen porosimetry and small angle neutron scattering (SANS), and the particle morphology by transmission electron microscopy (TEM) and ultra-small angle neutron scattering (USANS). The thermal behavior was investigated by simultaneous thermogravimetry-differential scanning calorimetry (TG-DSC) measurements. The SANS and N2 sorption results demonstrated that a well-ordered mesoporous structure was obtained at all conditions in the synthesis at room temperature. Addition of methoxyethanol led to an increase of the pore wall thickness. Simultaneously, an increase of methoxyethanol content led to lowering of the mean particle size from 300 to 230 nm, according to the ultra-small angle scattering data. The ordered porosity and high specific surfaces make these materials suitable for applications such as adsorbents in environmental remediation. Batch adsorption measurements of metal ion removal from aqueous solutions of Cu(II) and Pb(II) showed that the materials exhibit dominantly monolayer surface adsorption characteristics. The adsorption capacities were 9.7 mg/g for Cu(II) and 18.8 mg/g for Pb(II) at pH 5, making these materials competitive in performance to various composite materials.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269238

ABSTRACT

Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag(0) structures at elevated temperatures (500 °C and 800 °C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.

3.
Materials (Basel) ; 14(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809623

ABSTRACT

Understanding the tempering behavior of medium carbon steels is mandatory if their mechanical properties are to be improved. For an optimal technology to be developed for this purpose, a substantial experimental basis is needed to extract quantitative information on the microstructure of the tempered material. This paper reports on the characterization of microstructural changes induced by tempering in medium-carbon steels alloyed with Si, Cr, Cu, and Mn using state-of-the-art experimental techniques. Complementarities among these techniques are highlighted. The evolution of transition carbides, cementite, and copper precipitates is described using data from X-ray diffraction, small and ultra-small angle neutron diffraction, transmission electron microscopy, and dilatometry observation. The effects of silicon, chromium, and copper on the mechanism of carbide and copper precipitation are discussed. The considerable changes found in the size and volume of copper precipitates correlate well with the difference in the yield stress between tempered steels with and without copper.

4.
Materials (Basel) ; 13(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33265936

ABSTRACT

Resolution properties of the unconventional high-resolution neutron diffraction three-axis setup for strain/stress measurements of large bulk polycrystalline samples are presented. Contrary to the conventional two-axis setups, in this case, the strain measurement on a sample situated on the second axis is carried out by rocking the bent perfect crystal (BPC) analyzer situated on the third axis of the diffractometer. Thus, the so-called rocking curve provides the sample diffraction profile. The neutron signal coming from the analyzer is registered by a point detector. This new setup provides a considerably higher resolution (at least by a factor of 5), which however, requires a much longer measurement time. The high-resolution neutron diffraction setting can be effectively used, namely, for bulk gauge volumes up to several cubic centimeters, and for plastic deformation studies on the basis of the analysis of diffraction line profiles, thus providing average values of microstructure characteristics over the irradiated gauge volume.

5.
Sci Rep ; 8(1): 11133, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042481

ABSTRACT

A composite of powders of semi-Heusler ferromagnetic shape memory and pure titanium was successfully prepared by spark plasma sintering at the temperature of 950 °C. Sintering resulted in the formation of small precipitates and intermetallic phases at the heterogeneous interfaces. Various complementary experimental methods were used to fully characterize the microstructure. Imaging methods including transmission and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed a position and chemical composition of individual intermetallic phases and precipitates. The crystalline structure of the phases was examined by a joint refinement of X-ray and neutron diffraction patterns. It was found that Co38Ni33Al29 decomposes into the B2-(Co,Ni)Al matrix and A1-(Co,Ni,Al) particles during sintering, while Al, Co and Ni diffuse into Ti forming an eutectic two phase structure with C9-Ti2(Co,Ni) precipitates. Complicated interface intermetallic structure containing C9-Ti2(Co,Ni), B2-(Co,Ni)Ti and L21-(Co,Ni)(Al,Ti) was completely revealed. In addition, C9-Ti2(Co,Ni) and A1-(Co,Ni,Al) precipitates were investigated by an advanced method of small angle neutron scattering. This study proves that powder metallurgy followed by spark plasma sintering is an appropriate technique to prepare bulk composites from very dissimilar materials.

6.
Nanotechnology ; 23(32): 325606, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22828486

ABSTRACT

We performed studies of the self-organization processes in nanoporous alumina membranes at initial and late stages of aluminum anodization by using scanning electron microscopy (SEM) and small-angle neutron scattering (SANS). SEM observations indicated three stages in the self-organization of nanopores in alumina: (1) nucleation of random nanopores with a broad radius distribution, (2) narrowing the radius distribution and (3) slow evolution of the nanoporous structure towards ordering of nanopores into large domains. SANS studies revealed orientational correlation between ordered domains of nanopores, which is characterized by a small misorientation angle. For the samples with high aspect ratios of nanopores, the SANS patterns showed azimuthal smearing, which was attributed to the redistribution of nanopores between the domains during their growth.

7.
Small ; 8(15): 2381-93, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22549909

ABSTRACT

Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (∼13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium.


Subject(s)
Doxorubicin/administration & dosage , Drug Carriers/chemistry , Magnetics , Doxorubicin/chemistry , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...