Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Chem Biomol Eng ; 12: 63-95, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33909470

ABSTRACT

Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.


Subject(s)
Semiconductors
2.
RSC Adv ; 10(21): 12355-12359, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-35497609

ABSTRACT

We report here the effect of the photoelectrochemical photocurrent switching (PEPS) observed on highly-ordered pristine anodized Ti/TiO2 for the first time. At negative potential bias, blue irradiation gives cathodic photocurrent, whereas anodic photocurrent was observed for ultraviolet irradiation. We believe this phenomenon is due to the electron pathway provided by Ti3+ defect states.

3.
Front Chem ; 7: 419, 2019.
Article in English | MEDLINE | ID: mdl-31245356

ABSTRACT

Adjustment of the environmental acidity is a powerful method for fine-tuning the outcome of many chemical processes. Numerous strategies have been developed for the modification of pH in bulk as well as locally. Electrochemical and photochemical processes provide a powerful approach for on-demand generation of ion concentration gradients locally at solid-liquid interfaces. Spatially organized in individual way electrodes provide a particular pattern of proton distribution in solution. It opens perspectives to iontronics which is a bioinspired approach to signaling, information processing, and storing by spatial and temporal distribution of ions. We prove here that soft layers allow to control of ion mobility over the surface as well as processes of self-organization are closely related to change in entropy. In this work, we summarize the achievements and discuss perspectives of ion gradients in solution for information processing.

4.
J R Soc Interface ; 16(150): 20180626, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30958160

ABSTRACT

In situ studies of transmembrane channels often require a model bioinspired artificial lipid bilayer (LB) decoupled from its underlaying support. Obtaining free-standing lipid membranes is still a challenge. In this study, we suggest an electrochemical approach for LB separation from its solid support via hydroquinone oxidation. Layer-by-layer deposition of polyethylenimine (PEI) and polystyrene sulfonate (PSS) on the gold electrode was performed to obtain a polymeric nanocushion of [PEI/PSS]3/PEI. The LB was deposited on top of an underlaying polymer support from the dispersion of small unilamellar vesicles due to their electrostatic attraction to the polymer support. Since lipid zwitterions demonstrate pH-dependent charge shifting, the separation distance between the polyelectrolyte support and LB can be adjusted by changing the environmental pH, leading to lipid molecules recharge. The proton generation associated with hydroquinone oxidation was studied using scanning vibrating electrode and scanning ion-selective electrode techniques. Electrochemical impedance spectroscopy is suggested to be a powerful instrument for the in situ observation of processes associated with the LB-solid support interface. Electrochemical spectroscopy highlighted the reversible disappearance of the LB impact on impedance in acidic conditions set by dilute acid addition as well as by electrochemical proton release on the gold electrode due to hydroquinone oxidation.


Subject(s)
Gold/chemistry , Hydroquinones/chemistry , Lipid Bilayers/chemistry , Polyethyleneimine/chemistry , Polystyrenes/chemistry , Electrodes , Hydrogen-Ion Concentration , Oxidation-Reduction
5.
Langmuir ; 35(26): 8543-8556, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31018639

ABSTRACT

This article summarizes more than 10 years of cooperation with Prof. Helmuth Möhwald. Here we describe how the research moved from light-regulated feedback sustainable systems and control biodevices to the current focus on infochemistry in aqueous solution. An important advanced characteristic of such materials and devices is the pH concentration gradient in aqueous solution. A major part of the article focuses on the use of localized illumination for proton generation as a reliable, minimal-reagent-consuming, stable light-promoted proton pump. The in situ scanning vibration electrode technique (SVET) and scanning ion-selective electrode technique (SIET) are efficient for the spatiotemporal evolution of ions on the surface. pH-sensitive polyelectrolyte (PEs) multilayers with different PE architectures are composed with a feedback loop for bionic devices. We show here that pH-regulated PE multilayers can change their properties-film thickness and stiffness, permeability, hydrophilicity, and/or fluorescence-in response to light or electrochemical or biological processes instead of classical acid/base titration.

SELECTION OF CITATIONS
SEARCH DETAIL
...