Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Transgenic Res ; 31(4-5): 525-535, 2022 10.
Article in English | MEDLINE | ID: mdl-35960480

ABSTRACT

In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.


Subject(s)
Angiotensin-Converting Enzyme 2 , Mice, Transgenic , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19 , Disease Models, Animal , Humans , Mice , Peptide Elongation Factor 1/genetics , Promoter Regions, Genetic , SARS-CoV-2/genetics , Transgenes
2.
Genes (Basel) ; 12(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208866

ABSTRACT

Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.


Subject(s)
Cell Differentiation , Cell Lineage , Chromatin Assembly and Disassembly , Erythroid Precursor Cells/cytology , Erythropoiesis , Gene Expression Regulation , Transcription Factors/metabolism , Animals , Genome , Humans , Transcription Factors/genetics
3.
Toxicol Rep ; 8: 499-504, 2021.
Article in English | MEDLINE | ID: mdl-33732625

ABSTRACT

AIM: The aim of this work was to study the effect of telomere length in the chromosomes of nuclear blood cells in individuals with coronary heart disease (CHD) on the development of cardiovascular complications (CVC). MATERIALS AND METHODS: DNA was isolated from nuclear blood cells of 498 study participants. The telomere length was determined by real-time polymerase chain reaction. The investigation of each sample was repeated three times. Five years after the end of this study, a telephone survey of 119 patients with CHD was conducted in order to obtain data on the presence of CVC. RESULTS: According to the results obtained, a decrease in telomere length in patients with coronary heart disease increases the risk of subsequent development of cardiovascular complications. CONCLUSION: Patients with coronary heart disease with shorter telomeres compared with conventionally healthy study participants had an increased risk of cardiovascular complications within 5 years after telomere analysis.

4.
Sci Rep ; 11(1): 4414, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627746

ABSTRACT

Generation of mature red blood cells, consisting mainly of hemoglobin, is a remarkable example of coordinated action of various signaling networks. Chromatin condensation is an essential step for terminal erythroid differentiation and subsequent nuclear expulsion in mammals. Here, we profiled 3D genome organization in the blood cells from ten species belonging to different vertebrate classes. Our analysis of contact maps revealed a striking absence of such 3D interaction patterns as loops or TADs in blood cells of all analyzed representatives. We also detect large-scale chromatin rearrangements in blood cells from mammals, birds, reptiles and amphibians: their contact maps display strong second diagonal pattern, representing an increased frequency of long-range contacts, unrelated to TADs or compartments. This pattern is completely atypical for interphase chromosome structure. We confirm that these principles of genome organization are conservative in vertebrate erythroid cells.


Subject(s)
Erythrocytes/physiology , Genome/genetics , Vertebrates/genetics , Amphibians/genetics , Animals , Birds/genetics , Cell Nucleus/genetics , Chromatin/genetics , Erythroid Cells/cytology , Interphase/genetics , Mammals/genetics , Mice , Mice, Inbred C57BL , Reptiles/genetics
5.
Int J Mol Sci ; 22(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445687

ABSTRACT

Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Oxidative Stress/physiology , Animals , Homeostasis/physiology , Humans , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism
6.
Curr Pharm Des ; 27(2): 177-184, 2021.
Article in English | MEDLINE | ID: mdl-32867647

ABSTRACT

BACKGROUND: The present review article considers some chronic diseases of vascular and metabolic genesis, the causes of which may be mitochondrial dysfunction. Very often, in the long course of the disease, complications may occur, leading to myocardial infarction or ischemic stroke and, as a result, death. In particular, a large percentage of human deaths nowadays belongs to cardiovascular diseases, such as coronary heart disease (CHD), arterial hypertension, cardiomyopathies, and type 2 diabetes mellitus. OBJECTIVE: The aim of the present review was the analysis of literature sources, devoted to an investigation of a link of mitochondrial DNA mutations with chronic diseases of vascular and metabolic genesis. RESULTS: The analysis of literature indicates the association of the mitochondrial genome mutations with coronary heart disease, type 2 diabetes mellitus, hypertension, and various types of cardiomyopathies. CONCLUSION: The detected mutations can be used to analyze the predisposition to chronic diseases of vascular and metabolic genesis. They can also be used to create molecular-cell models necessary to evaluate the effectiveness of drugs developed for the treatment of these pathologies. MtDNA mutations associated with the absence of diseases of vascular and metabolic genesis could be potential candidates for gene therapy of the said diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , DNA, Mitochondrial/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Mitochondria/genetics , Mutation
7.
Life (Basel) ; 10(9)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842589

ABSTRACT

The search for markers of predisposition to atherosclerosis development is very important for early identification of individuals with a high risk of cardiovascular disease. The aim of the present study was to investigate the association of mitochondrial DNA mutations with carotid intima-media thickness and to determine the impact of mitochondrial heteroplasmy measurements in the prognosis of atherosclerosis development. This cross-sectional, population-based study was conducted in 468 subjects from the Novosibirsk region. It was shown that the mean (carotid intima-media thickness) cIMT correlated with the following mtDNA mutations: m.15059G>A (r = 0.159, p = 0.001), m.12315G>A (r = 0.119; p = 0.011), m.5178C>A (r = 0.114, p = 0.014), and m.3256C>T (r = 0.130, p = 0.011); a negative correlation with mtDNA mutations m.14846G>A (r = -0.111, p = 0.042) and m.13513G>A (r = -0.133, p = 0.004) was observed. In the linear regression analysis, the addition of the set of mtDNA mutations to the conventional cardiovascular risk factors increased the ability to predict the cIMT variability from 17 to 27%. Multi-step linear regression analysis revealed the most important predictors of mean cIMT variability: age, systolic blood pressure, blood levels of total cholesterol, LDL and triglycerides, as well as the mtDNA mutations m.13513G>A, m.15059G>A, m.12315G>A, and m.3256C>T. Thus, a high predictive value of mtDNA mutations for cIMT variability was demonstrated. The association of mutation m.13513G>A and m.14846G>A with a low value of cIMT, demonstrated in several studies, represents a potential for the development of anti-atherosclerotic gene therapy.

8.
Eur J Cancer Prev ; 28(6): 522-528, 2019 11.
Article in English | MEDLINE | ID: mdl-31584889

ABSTRACT

Air pollutants and ionizing radiation are well-known carcinogens involved in the pathogenesis of lung cancer, and residents of coal-mining regions are exposed routinely to these agents. Polymorphisms in DNA repair genes may be associated with an increased risk of malignant transformation. We investigated associations between the risk of lung cancer in residents of the coal-mining region and polymorphisms in the genes APEX1 (rs1130409), hOGG1 (rs1052133), XRCC1 (rs25489, rs25487), XRCC2 (rs3218536), XRCC3 (rs861539), ADPRT/PARP1 (rs1136410), XPD/ERCC2 (rs13181), XPG/ERCC5 (rs17655), XPC (rs2228001), ATM (rs1801516), and NBS1 (rs1805794). Three hundred and forty residents of the Kemerovo Region (a coal-mining region of western Siberia) were lung cancer patients exposed to air pollutants and ionizing radiation (case) and 335 were healthy donors (control). Genotyping was performed by real-time PCR and allele-specific PCR. We discovered that polymorphisms in the XPD gene in men [log-additive model: odds ratio (OR) = 1.64, 95% confidence interval (CI): 1.17-2.31], the ATM gene in women and nonsmokers (codominant model: OR = 0.11, 95% CI: 0.02-0.49 and OR = 0.25, 95% CI: 0.08-0.72, respectively), the APEX1 gene for smokers (recessive model: OR = 2.55, 95% CI: 1.34-4.85), and the NBS1 gene for those who work in the coal industry (overdominant model: OR = 0.40, 95% CI: 0.21-0.75) are associated with an increased risk of lung cancer. Using the multifactor dimensionality reduction method, we found a model of gene-gene interactions associated with the risk of lung cancer: NBS1 (rs1805794)-XRCC1 (rs25487)-hOGG1 (rs1052133)-XPG (rs17655). These results indicate an association between combinations of polymorphisms in the studied genes and the risk of lung cancer in residents of a coal-mining region.


Subject(s)
Biomarkers, Tumor/genetics , DNA Repair Enzymes/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Mining , Occupational Exposure/analysis , Polymorphism, Single Nucleotide , Case-Control Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Humans , Incidence , Male , Middle Aged , Prognosis , Russia/epidemiology
9.
Biomolecules ; 9(9)2019 09 18.
Article in English | MEDLINE | ID: mdl-31540444

ABSTRACT

In the present work, a pilot creation of four cybrid cultures with high heteroplasmy level was performed using mitochondrial genome mutations m.12315G>A and m.1555G>A. According to data of our preliminary studies, the threshold heteroplasmy level of mutation m.12315G>A is associated with atherosclerosis. At the same time, for a mutation m.1555G>A, such a heteroplasmy level is associated with the absence of atherosclerosis. Cybrid cultures were created by fusion of rho0-cells and mitochondria from platelets with a high heteroplasmy level of the investigated mutations. To create rho0-cells, THP-1 culture of monocytic origin was taken. According to the results of the study, two cybrid cell lines containing mutation m.12315G>A with the heteroplasmy level above the threshold value (25% and 44%, respectively) were obtained. In addition, two cybrid cell lines containing mutation m.1555G>A with a high heteroplasmy level (24%) were obtained. Cybrid cultures with mtDNA mutation m.12315G>A can be used to model both the occurrence and development of atherosclerosis in cells and the titration of drug therapy for patients with atherosclerosis. With the help of cybrid cultures containing single nucleotide replacement of mitochondrial genome m.1555G>A, it is possible to develop approaches to the gene therapy of atherosclerosis.


Subject(s)
Atherosclerosis/genetics , Cell Fusion/methods , Hybrid Cells/cytology , Point Mutation , RNA, Transfer, Leu/genetics , Blood Platelets/cytology , Cell Culture Techniques , Cell Line , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Models, Biological , THP-1 Cells
10.
Curr Pharm Des ; 25(6): 693-699, 2019.
Article in English | MEDLINE | ID: mdl-30931844

ABSTRACT

OBJECTIVE: In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome. METHODS: We described different methods of transfection, transduction and editing of the human genome, used in the literature. RESULTS: We reviewed the researches in which the creation of сell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used. Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary. CONCLUSION: The most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.


Subject(s)
Cardiovascular Diseases/genetics , Gene Editing , Mutation , Transfection , Biolistics , CRISPR-Cas Systems , Humans , Mitochondria/genetics
11.
Ther Clin Risk Manag ; 14: 1933-1942, 2018.
Article in English | MEDLINE | ID: mdl-30349272

ABSTRACT

There are several types of mitochondrial cytopathies, which cause a set of disorders, arise as a result of mitochondria's failure. Mitochondria's functional disruption leads to development of physical, growing and cognitive disabilities and includes multiple organ pathologies, essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial DNA. Nowadays, numerous mtDNA mutations significant to the appearance and progress of pathologies in humans are detected. In this mini-review, we accent on the mitochondrial cytopathies related to mutations of mtDNA. As well known, there are definite set of symptoms of mitochondrial cytopathies distinguishing or similar for different syndromes. The present article contains data about mutations linked with cytopathies that facilitate diagnosis of different syndromes by using genetic analysis methods. In addition, for every individual, more effective therapeutic approach could be developed after wide-range mutant background analysis of mitochondrial genome.

13.
Oxid Med Cell Longev ; 2018: 4647214, 2018.
Article in English | MEDLINE | ID: mdl-29983856

ABSTRACT

Modelling of pathological processes in cells is one of the most sought-after technologies of the 21st century. Using models of such processes may help to study the pathogenetic mechanisms of various diseases. The aim of the present study was to analyse the literature, dedicated to obtaining and investigating cybrid models. Besides, the possibility of modeling pathological processes in cells and treatment of different diseases using the models was evaluated. Methods of obtaining Rho0 cell cultures showed that, during their creation, mainly a standard technique, based on the use of mtDNA replication inhibitors (ethidium bromide), was applied. Cybrid lines were usually obtained by PEG fusion. Most frequently, platelets acted as donors of mitochondria. According to the analysis of the literature data, cybrid cell cultures can be modeled to study the dysfunction of the mitochondrial genome and molecular cellular pathological processes. Such models can be very promising for the development of therapeutic approaches to the treatment of various human diseases.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Animals , DNA, Mitochondrial/drug effects , Ethidium/pharmacology , Genome, Mitochondrial/drug effects , HEK293 Cells , Humans , Mutation/drug effects , Mutation/genetics
14.
Dis Markers ; 2018: 9749457, 2018.
Article in English | MEDLINE | ID: mdl-29670672

ABSTRACT

Myocardial infarction is one of the clinical manifestations of coronary heart disease. In some cases, the cause of myocardial infarction may be atherosclerotic plaques which occurred in the human aorta. The association of mtDNA mutations with atherosclerotic lesions in human arteries was previously detected by our research group. In this study, we used samples of white blood cells collected from 225 patients with myocardial infarction and 239 control persons with no health complaints. DNA was isolated from the blood leukocyte samples. Then, PCR fragments of DNA were obtained. They contained the investigated regions of 11 mitochondrial genome mutations (m.5178C>A, m.3336T>C, m.652delG, m.12315G>A, m.14459G>A, m.652insG, m.14846G>A, m.13513G>A, m.1555A>G, m.15059G>A, m.3256C>T). According to the obtained results, three mutations of the human mitochondrial genome correlated with myocardial infarction. A positive correlation was observed for mutation m.5178C>A. At the same time, a highly significant negative correlation with myocardial infarction was observed for mutation m.14846G>A. One single-nucleotide substitution of m.12315G>A had a trend towards negative correlation. These mutations can potentially be useful for creating molecular/cellular models for studying the mechanisms of myocardial infarction and designing novel therapies. Moreover, these mutations can possibly be used for diagnostic purposes.


Subject(s)
Genome, Mitochondrial , Mutation , Myocardial Infarction/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Myocardial Infarction/epidemiology
15.
Eur J Cancer Prev ; 27(1): 6-12, 2018 01.
Article in English | MEDLINE | ID: mdl-27232209

ABSTRACT

Lung cancer is one of the most common forms of cancer. The aim of this study was to validate chromosome aberrations in peripheral blood lymphocytes of lung cancer patients living in a region with high air pollution and increased background radon levels as a biomarker of cancer risk. A total of 417 lung cancer patients and 468 control participants were analysed using a chromosome aberration assay in peripheral blood lymphocytes. The results showed that chromatid-type aberrations (2.26±1.58 vs. 1.60±1.58) and chromosome-type aberrations (CSAs) (0.96±1.36 vs. 0.42±0.70) in lung cancer patients were increased significantly in comparison with the controls. The most significant two-fold increase was detected for CSAs (nonsmoking patients: 0.84±1.54 vs. 0.41±0.73%, smoking patients: 0.99±1.31 vs. 0.44±0.67%). The frequency of dicentric and ring chromosomes, double minutes and rogue cells was significantly higher (P=0.002, 0.00002, 0.01, 0.0007) in the lung cancer patients. As both analysed groups lived in the same environment, our results show that increased radon levels were not the only source for the detected genome damage. Using binomial logistic regression, the estimated odds ratios and 95% confidence intervals adjusted for the main confounders (smoking, occupational exposure, age) were 1.31 (1.20-1.40) for chromatid-type aberrations, 1.28 (1.17-1.33), and 1.68 (1.49-1.88) for CSAs. It may be suggested that lung cancer patients show a significant increase in genome damage that may be caused by an interplay between exposure and individual low capacity of DNA repair, leading to genome instability.


Subject(s)
Air Pollution/adverse effects , Biomarkers, Tumor/genetics , Chromosome Aberrations/drug effects , Lung Neoplasms/genetics , Radon/toxicity , Aged , Chromatids/genetics , Cohort Studies , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/etiology , Lymphocytes/metabolism , Male , Middle Aged , Russia
16.
Oxid Med Cell Longev ; 2017: 6934394, 2017.
Article in English | MEDLINE | ID: mdl-28951770

ABSTRACT

Mutations of mtDNA, due to their higher frequency of occurrence compared to nuclear DNA mutations, are the most promising biomarkers for assessing predisposition of the occurrence and development of atherogenesis. The aim of the present article was an analysis of correlation of several mitochondrial genome mutations with carotid atherosclerosis. Leukocytes from blood of study participants from Moscow polyclinics were used as research material. The sample size was 700 people. The sample members were diagnosed with "atherosclerosis" on the basis of ultrasonographic examination and biochemical and molecular cell tests. DNA was isolated from blood leukocyte samples of the study participants. PCR fragments of DNA, containing the region of 11 investigated mutations, were pyrosequenced. The heteroplasmy level of these mutations was detected. Statistical analysis of the obtained results was performed using the software package SPSS 22.0. According to the obtained results, an association of mutations m.652delG, m.3336C>T, m.12315G>A, m.14459G>A m.15059G>A with carotid atherosclerosis was found. These mutations can be biomarkers for assessing predisposition to this disease. Additionally, two single nucleotide substitutions (m.13513G>A and m.14846G>A), negatively correlating with atherosclerotic lesions, were detected. These mutations may be potential candidates for gene therapy of atherosclerosis and its risk factors.


Subject(s)
Carotid Artery Diseases/genetics , Genome, Mitochondrial , Mutation , Carotid Artery Diseases/pathology , Case-Control Studies , Female , Humans , Male
17.
J Cancer Res Clin Oncol ; 143(11): 2235-2243, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28770368

ABSTRACT

PURPOSE: To study the potential links between genetic polymorphisms in the GSTT1, GSTM1, GSTP1 genes and the frequency of chromosomal aberrations (CAs) in lung cancer patients and healthy residents in Russian Federation. METHODS: 200 cells in well-spread metaphase with 46 chromosomes were examined for 353 newly diagnosed lung cancer patients (males) who received medical treatment in the Kemerovo Regional Oncology Center (Kemerovo, Russian Federation), and 300 healthy males from Kemerovo, Russian Federation. The polymorphisms of the GSTM1 del and GSTT1 del genes were analysed by multiplex PCR. Genotyping of the polymorphic variants in the GSTP1 (A313G, T341C) gene was performed using Real-time PCR with competing TaqMan probes complementary to the polymorphic DNA sites. The data analysis was performed using software STATISTICA 8.0 (StatSoft Inc., USA). RESULTS: We discovered that a GSTM1 del polymorphism increases the frequency of chromosomal damage in smoking patients with lung cancer, a general group of lung cancer patients, donors with non-small cell lung cancer and patients in the latest stages of the malignant process. The synergetic effects of occupational exposure and the malignant process can induce some modifications in the cytogenetic status in lung cancer patients harbouring the GSTM1 del polymorphism. CONCLUSIONS: CAs in peripheral blood lymphocytes can be used as biomarkers of the early biological effects of exposure to genotoxic carcinogens and may predict future cancer incidence in several epidemiologic studies. Genetic changes in genes encoding phase II detoxification enzymes are linked to decreases in the metabolic detoxification of environmentally derived genotoxic carcinogens.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Chromosome Aberrations , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Polymorphism, Genetic/genetics , Small Cell Lung Carcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Female , Follow-Up Studies , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Small Cell Lung Carcinoma/pathology , Survival Rate
18.
Exp Mol Pathol ; 99(3): 717-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26586456

ABSTRACT

Mitochondrial genome mutations are associated with different pathologies. Earlier the authors of the study found an association of some mitochondrial genome mutations with atherosclerosis. In the present study, an attempt to analyze a connection of detected mutations with the age of patients with atherosclerosis was made. The investigated sample included 700 individuals, examined by ultrasonography in polyclinics of Moscow and the Moscow region. The sample was divided approximately into two equal parts. The first part included patients with carotid atherosclerosis. The second part included conventionally healthy study participants. In PCR-fragments of individuals' DNA the heteroplasmy level of investigated mutations was quantitatively measured by the method, developed by members of our laboratory on the basis of pyrosequencing technology. According to the obtained results mutations G12315A, G14459A and G15059A were significantly associated with the age of the study participants. The same time one nucleotide replacements A1555G and G14846A correlated negatively with the age at a high level of significance. Thus, in the present study an association of atherogenic mitochondrial genome mutations with age was found. Antiatherogenic mutations were correlated with the age negatively. This prompts a suggestion about common mechanisms of atherogenesis and aging.


Subject(s)
Aging/genetics , Carotid Artery Diseases/genetics , DNA, Mitochondrial/genetics , Age Factors , Humans , Mutation , Polymerase Chain Reaction
19.
Biomed Res Int ; 2015: 825468, 2015.
Article in English | MEDLINE | ID: mdl-25834827

ABSTRACT

OBJECTIVE: The aim of the present study was an analysis of heteroplasmy level in mitochondrial mutations 652delG, A1555G, C3256T, T3336C, 652insG, C5178A, G12315A, G13513A, G14459A, G14846A, and G15059A in normal and affected by atherosclerosis segments of morphologically mapped aortic walls. METHODS: We investigated the 265 normal and atherosclerotic tissue sections of 5 human aortas. Intima of every aorta was divided according to morphological characteristics into segments with different types of atherosclerotic lesions: fibrous plaque, lipofibrous plaque, primary atherosclerotic lesion (fatty streak and fatty infiltration), and normal intima from human aorta. PCR-fragments were analyzed by a new original method developed in our laboratory on the basis of pyrosequence technology. RESULTS: According to the obtained data, mutations G12315A and G14459A are significantly associated with total and primary atherosclerotic lesions of intimal segments and lipofibrous plaques (P ≤ 0.01 and P ≤ 0.05, accordingly). Mutation C5178A is significantly associated with fibrous plaques and total atherosclerotic lesions (P ≤ 0.01). A1555G mutation shows an antiatherosclerotic effect in primary lesion in lipofibrous plaques (P ≤ 0.05). Meanwhile, G14846A mutation is antiatherogenic for lipofibrous plaques (P ≤ 0.05). CONCLUSION: Therefore, mutations C5178A, G14459A, G12315A, A1555G, and G14846A were found to be associated with atherosclerotic lesions.


Subject(s)
Atherosclerosis/genetics , Genome, Mitochondrial/genetics , Mutation/genetics , Plaque, Atherosclerotic/genetics , Adult , Aged , Aorta/pathology , Atherosclerosis/pathology , Female , Genetic Association Studies , Humans , Male , Middle Aged , Mitochondria/genetics , Mosaicism , Plaque, Atherosclerotic/pathology , Tunica Intima/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...