Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 153(4): 2090, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37092927

ABSTRACT

A method for the determination of longitudinal and transverse bulk acoustic wave attenuation from measurements of the decay-rate of two independent zero-group-velocity resonances in a couple of matched plates is presented. A linear relation is derived, which links the bulk-wave attenuation coefficients to the decay-rate of plate-resonances. The relation is used to determine the acoustic loss of tungsten at GHz frequencies from noncontact laser-ultrasonic measurements in plates with thicknesses of about 1 µm. The longitudinal and transverse attenuation was found to amount to 1918 m-1 and 7828 m-1 at 2.16 GHz and 3265 m-1 and 12181 m-1 at 2.46 GHz. The presented approach is validated with calculated responses to a thermoelastic source, and the accuracy of the obtained attenuation values is estimated to be in the range of 10%.

2.
Ultrasonics ; 119: 106585, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34598096

ABSTRACT

Grain boundary scattering-induced attenuation and phase-velocity dispersion of Rayleigh-type surface acoustic waves are studied with a time-domain finite-element method (FEM). The FEM simulation incorporates a realistic material model based on matching the spatial two-point correlation function of a Laguerre tessellation with that obtained from optical micrographs of a previously studied aluminum sample. Plane surface acoustic waves are excited in a multitude of statistically equivalent virtual polycrystals, and their surface displacement fields are averaged for subsequent extraction of the coherent-wave attenuation coefficient and phase velocity. Comparisons to previous laser-ultrasonic experiments, an analytical mean-field model, and the FEM results show good agreement in a broad frequency range from about 10 to 130MHz. Observed discrepancies between models and measurement reveal the importance of spatial averaging in the context of mean-field approaches and suggest improvement strategies for future experimental studies and advanced analytical models. A different attenuation power law for Rayleigh waves is found in the stochastic scattering regime compared to bulk acoustic waves.

3.
J Acoust Soc Am ; 143(1): 219, 2018 01.
Article in English | MEDLINE | ID: mdl-29390780

ABSTRACT

The influence of a polycrystals' grain structure on elastic wave scattering is studied with analytical and numerical methods in a broad frequency range. A semi-analytical attenuation model, based on an established scattering theory, is presented. This technique accurately accounts for the grain morphology without prior assumptions on grain statistics. This is achieved by incorporating a samples' exact spatial two-point correlation function into the theory. The approach is verified by using a finite element method (FEM) to simulate P-wave propagation in 3D Voronoi crystals with equal mean grain diameter, but different grain shape uniformity. Aluminum and Inconel serve as representatives for weak and strong scattering cubic class materials for simulations and analytical calculations. It was found that the shape of the grains has a strong influence on the attenuation curve progression in the Rayleigh-stochastic transition region, which was attributed to mode conversion scattering. Comparisons between simulations and theory show excellent agreement for both materials. This demonstrates the need for accurately taking the microstructure of heterogeneous materials into account, to get precise analytical predictions for their scattering behaviour. It also demonstrates the impressive accuracy and flexibility of the scattering theory which was used.

SELECTION OF CITATIONS
SEARCH DETAIL
...