Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Aquat Toxicol ; 272: 106961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781688

ABSTRACT

In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.


Subject(s)
Carps , Liver , Water Pollutants, Chemical , Animals , Carps/metabolism , Liver/metabolism , Liver/drug effects , Liver/ultrastructure , Water Pollutants, Chemical/toxicity , Microscopy, Electron, Transmission , Magnetic Iron Oxide Nanoparticles/toxicity
2.
RSC Adv ; 14(24): 16696-16703, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784416

ABSTRACT

This study used a modified polyol technique to synthesize silver nanowires (AgNWs), which were subsequently mixed with polyvinyl alcohol (PVA) polymer and air-dried under ambient conditions. As a result, AgNWs/PVA nanocomposites with a concentration of 2% were prepared by a casting process. After that, the upper surface of the produced samples was treated with H2S gas, as a result of which asymmetric structures were formed depending on the gas concentration, exposure time and penetration into the layers. The structural, morphological, and optical properties of these asymmetric structures were analyzed. Changes in the sample structure were studied using X-ray diffraction (XRD), their optical properties were studied using ultraviolet-visible (UV-Vis), Raman spectroscopy, and their morphology using Transmission electron microscopy (TEM). A simple technique involving H2S gas was used for the sulfidation process of the samples, marking the first exposure of AgNW/PVA nanocomposites to such treatment. Examination of the structural and optical properties of the surfaces revealed clear differences in their physical properties after sulfidation. These obtained results were also supported by TEM images. Finally, the successful production of AgNWs/PVA/Ag2S anisotropic structure was achieved by this method.

3.
Micron ; 181: 103624, 2024 06.
Article in English | MEDLINE | ID: mdl-38492241

ABSTRACT

It is well documented that propionic acid (PPA) produces behavioral, morphological, molecular and immune responses in rats that are characteristic of autism spectrum disorder in humans. However, whether PPA affects the ultrastructure and synaptic architecture of regions of autistic brain has not been adequately addressed. Earlier we show that single intraperitoneal (IP) injection of PPA (175 mg/kg) produces superficial changes in the spatial memory and learning of adolescent male Wistar rats. However, in neurons, synapses and glial cells of hippocampal CA1 area and medial prefrontal cortex transient (mainly) or enduring alterations were detected. In this study, we used electron microscopic morphometric analysis to test the effect of PPA on different structural parameters of axodendritic synapses of the hippocampus and prefrontal cortex. The animals were treated with a single IP injection of PPA (175 mg/kg). The length and width of synaptic active zone, the area of presynaptic and postsynaptic mitochondria, the distance between presynaptic mitochondria and the synapse active zone, the distance between postsynaptic mitochondria and postsynaptic density and the depth and opening diameter of neuronal porosome complex were evaluated. Our results show that synaptic mitochondria of the hippocampus and prefrontal cortex are the most vulnerable to PPA treatment: in both regions, the area of postsynaptic mitochondria were increased. In general, our results show that even small dose of PPA, which produces only superficial effects on spatial memory and learning is able to alter the synapse architecture in brain regions involved in cognition and autism pathogenesis. Therefore, the microbiome may be involved in the control of neurotransmission in these regions.

4.
RSC Adv ; 14(4): 2320-2326, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38213967

ABSTRACT

In this study, composite materials composed of graphene oxide (GO) synthesized by a modified Hummers' method and silver nanowires (AgNWs) synthesized by a modified polyol method were prepared. The prepared composites were subjected to sulfidation under the influence of H2S gas. Structural changes in the samples were evaluated using X-ray diffraction (XRD). The binding nature of the composite was characterized using FT-IR spectroscopy. Optical properties and band gap values were investigated using ultraviolet-visible (UV-Vis) spectroscopy. The morphology of the composites was analyzed by transmission electron microscopy (TEM). A simple method using H2S gas was applied for the sulphidation process of the samples. The sulfidation process was successful under the influence of H2S gas, resulting in an increased distance between the GO layers and a decrease in the band gap value for the composite post-sulfidation. In addition, AgNWs were observed to decompose into Ag2S nanoparticles under the influence of H2S gas. It was determined that the value of the band gap of the sample changes because of sulphidation.

5.
Biochemistry (Mosc) ; 88(11): 1944-1955, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105211

ABSTRACT

Drought severely slows down plant growth, decreases crop yield, and affects various physiological processes in plants. We examined four local bread wheat cultivars with different drought tolerance (drought-tolerant Zirva 85 and Murov 2 and drought-sensitive Aran and Gyzyl bughda cultivars). Leaves from seedlings of drought-tolerant plants demonstrated higher activity of antioxidant enzymes and lower levels of malondialdehyde and hydrogen peroxide. The content of soluble proteins in drought-exposed increased, possibly due to the stress-induced activation of gene expression and protein synthesis. Drought-exposed Zirva 85 plants exhibited an elevated activity of nitrogen and carbon metabolism enzymes. Ultrastructural analysis by transmission electron microscopy showed drought-induced damage to mesophyll cells and chloroplast membranes, although it was manifested less in the drought-tolerant cultivars. Comparative analysis of the activity of metabolic and antioxidant enzymes, as well as observed ultrastructural changes in drought-exposed plants revealed that the response to drought of seedlings was more pronounced in drought-tolerant cultivars. These findings can be used in further studies of drought stress in wheat plants under natural conditions.


Subject(s)
Antioxidants , Triticum , Antioxidants/metabolism , Triticum/metabolism , Droughts , Plant Leaves/metabolism , Plant Development , Stress, Physiological
6.
Ecotoxicol Environ Saf ; 264: 115477, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37717352

ABSTRACT

During the development of nanotechnology, the production of many substances containing nanoparticles leads to the release of various nanoparticles into the environment, including the water ecosystem. The main goal of the current research was to study the ultrastructural characteristics of the entry and bioaccumulation of Fe3O4 nanoparticles in the small intestine of Cyprinus carpio (Linnaeus, 1758), as well as the pathomorphological changes in the fish organism. Two different doses (10 and 100 mg) of Fe3O4 nanoparticles were fed to fingerlings for 7 days and then intestinal samples were taken and studied. It was found that the extent of damages was boosted within the increment of nanoparticle concentration. The sequence and bioaccumulation of Fe3O4 nanoparticles in the small intestine of fish occurred as below: firstly, the nanoparticles passed into microvilli located in the apical part of enterocytes in the mucosa layer, from there into the cytoplasm of the epithelial cells, including cytoplasmatic organelles (nucleus, mitochondria, lysosomes, fat granules), and then into a lamina propria of the mucosa of the small intestine and passed into the endothelium of the blood vessels and to the erythrocytes of the vessels which located in the lumen. It was determined that although the nanoparticles were up to 30 nm in size, only particles with a maximum size of 20 nm could penetrate the intestinal wall. Thus, the release of Fe3O4 nanoparticles into the environment in high doses has a negative effect on the living ecosystem, including the body of fish living in the water.


Subject(s)
Carps , Nanoparticles , Animals , Ecosystem , Intestines , Lysosomes , Aquaculture , Iron , Nanoparticles/toxicity
7.
J Mater Chem B ; 11(34): 8271-8280, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37581615

ABSTRACT

This study is devoted to the synthesis of a 40-membered macroheterocycle with its further nanostructuring by magnetite nanoparticles. The mentioned macroheterocycle was synthesized by the [2+2] cyclocondensation of the oxygen-containing diamine with an aromatic dialdehyde in a non-catalytic medium and with no work-up procedure. The structure of the obtained macroheterocycle was studied by 1H and 13C nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Furthermore, the nanosupramolecular complex of macroheterocycles with magnetite nanoparticles was obtained and investigated by Fourier-transform infrared and ultraviolet-visible spectroscopy methods. Shifts in the infrared spectra of the nanosupramolecular complex indicate the interaction through metal-aromatic ring non-covalent bonding. The shift is also observed for the C-O-C stretching band of ether bonds. The loading rate of macroheterocycles on magnetite nanoparticles was 18.6%. The morphology of the ensemble was studied by transmission electron microscopy, which confirmed the synthesis of nanospherical particles with a diameter range of 10-20 nm. Powder X-ray diffraction analysis showed patterns of cubic Fe3O4 nanoparticles with a crystallite size equal to 9.1 nm. The macroheterocycle and its nanosupramolecular complex were tested against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. The results have shown that the created complex has shown 64 times better activity against Staphylococcus aureus in comparison with the individual macroheterocycle and 32 times better activity in comparison with the pristine antibiotic Ampicillin as a control. In addition, computational analysis of the macroheterocycle was performed at the B3LYP/6-31G level in water. Molecular docking analyses for the macroheterocycle revealed Penicillin-binding protein PBP2a (5M18) from the transpeptidase family as a target protein in Staphylococcus aureus.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microscopy, Electron, Transmission , Lactams
8.
Biogerontology ; 24(6): 925-935, 2023 12.
Article in English | MEDLINE | ID: mdl-37515624

ABSTRACT

Age-related decline in physical and cognitive functions are facts of life that do not affect everyone to the same extent. We had reported earlier that such cognitive decline is both sex- and context-dependent. Moreover, age-associated ultrastructural changes were observed in the hippocampus of male rats. In this study, we sought to determine potential differences in ultrastructural changes between male and female rats at various stages of life. We performed quantitative electron microscopic evaluation of hippocampal CA1 region, an area intimately involved in cognitive behavior, in both male and female adolescent, adult and old Wistar rats. Specifically, we measured the number of docking synaptic vesicles in axo-dendritic synapses, the length of active zone as well as the total number of synaptic vesicles. Distinct age- and sex-dependent effects were observed in several parameters. Thus, adult female rats had the lowest synaptic active zone compared to both adolescent and old female rats. Moreover, the same parameter was significantly lower in adult and old female rats compared to their male counterparts. On the other hand, old male rats had significantly lower number of total synaptic vesicles compared to both adolescent and adult male rats as well as compared to their female counterparts. Taken together, it may be suggested that age- and sex-dependent ultrastructural changes in the hippocampus may underlie at least some of the differences in cognitive functions among these groups.


Subject(s)
Hippocampus , Synapses , Rats , Male , Female , Animals , Rats, Wistar , Synapses/ultrastructure , Aging
9.
Dev Neurobiol ; 81(6): 833-846, 2021 09.
Article in English | MEDLINE | ID: mdl-34047044

ABSTRACT

It is now well established that aging is associated with emotional and cognitive changes. Although the basis of such changes is not fully understood, ultrastructural alterations in key brain areas are likely contributing factors. Recently, we reported that aging-related anxiety in male Wistar rats is associated with ultrastructural changes in the central nucleus of amygdala, an area that plays important role in emotional regulation. In this study, we evaluated the cognitive performance of adolescent, adult, and aged male Wistar rats in multi-branch maze (MBM) as well as in Morris water maze (MWM). We also performed ultrastructural analysis of the CA1 region of the hippocampus, an area intimately involved in cognitive function. The behavioral data indicate significant impairments in few indices of cognitive functions in both tests in aged rats compared to the other two age groups. Concomitantly, a total number of presynaptic vesicles as well as vesicles in the resting pool were significantly lower, whereas postsynaptic mitochondrial area was significantly higher in aged rats compared to the other age groups. No significant differences in presynaptic terminal area or postsynaptic mitochondrial number were detected between the three age groups. These results indicate that selective ultrastructural changes in specific hippocampal region may accompany cognitive decline in aging rats.


Subject(s)
Cognition , Hippocampus , Aging/physiology , Animals , Hippocampus/physiology , Male , Maze Learning/physiology , Rats , Rats, Wistar
10.
Saudi J Biol Sci ; 27(12): 3258-3266, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304131

ABSTRACT

The widespread exposure of metallic nanoparticles to the aquatic ecosystem and its adverse impact on human life is the colossal concern worldwide. In view of this, this context was investigated to analyze microscopically the bioaccumulation and localization of magnetite (Fe3O4) nanoparticles in the cellular organelles of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) in aquatic conditions. Initially, Fe3O4 nanoparticles were absorbed on to Elodea (Elodea canadensis) and fed to molluscs (Melanopsis praemorsa). Fish were fed with the same molluscs, and then the intestines and liver were examined using light and transmission electron microscopy. Results showed that nanoparticles were present in the cytoplasm and other organelles of cells (mitochondrion and lysosome) by absorbing through microvilli of the epithelial cells of the tunica mucosa in the intestine. Further, nanoparticles passed through the vessels of the lamina propria of the tunica mucosa and reached to the sinusoids of the liver via blood circulation. It was then accumulated from the endothelium of the sinusoid to the cytoplasm of liver hepatocytes and to mitochondria and lysosome. The accumulation of nanoparticles in the epithelial cells, cytoplasm, mitochondria, and lysosome revealed the degree of transparency of the pattern with slight hesitation. In summary, this investigation contributed towards the understanding of the physiological effects of Fe3O4 nanoparticles on O. mykiss, which ascertains essentiality for sustainable development of nanobiotechnology in the aquatic ecosystem.

11.
Dev Neurobiol ; 80(11-12): 433-442, 2020 11.
Article in English | MEDLINE | ID: mdl-33098201

ABSTRACT

Although the relationships between brain structure and emotions may alter across the life span, this relationship is of particular importance during aging when significant alterations in emotions may be manifested. Understanding the structural-behavioral relationship could not only provide a neurobiological basis of these changes, but could also suggest potential intervention. Since anxiety is commonly observed in aging population, we undertook this study to determine the extent of this behavioral manifestations as well as the associated ultrastructural changes in the amygdala. Rats of various age groups, adolescent, adult, and aged were tested for anxiety-like behavior and the ultrastructure/presynaptic architecture of the central nucleus of amygdala (CNA) were evaluated using transmission electron microscopy (EM). Aged rats were consistently more anxious than the other groups as evidenced by their scores in the elevated plus maze. Morphometric EM analysis of axodendritic synapses revealed that the aged rats had a lower presynaptic area as well as number of synapses, but unexpectedly a higher number of presynaptic mitochondria in CNA. Since presynaptic mitochondria are known to provide the energy for neurotransmission, it may be concluded that compensatory mechanisms are still operational during aging, and hence, may be a target for therapeutic intervention at this stage of life span.


Subject(s)
Aging/pathology , Amygdala/ultrastructure , Behavior, Animal/physiology , Aging/physiology , Amygdala/pathology , Animals , Emotions/physiology , Male , Rats , Rats, Wistar
12.
Funct Plant Biol ; 47(11): 970-976, 2020 10.
Article in English | MEDLINE | ID: mdl-32574552

ABSTRACT

A characteristic feature of C4 plants is the differentiation of the photosynthetic leaf tissues into two distinct cell types: mesophyll (M) and bundle sheath (BS) cells. We have investigated several biochemical parameters, including pigment composition, polypeptide patterns, fluorescence at 77K, the activity of photosystems and ultrastructure of mesophyll and bundle sheath chloroplasts of maize (Zea mays L.) plants. It is shown that the BS chloroplasts have ~2-fold higher chlorophyll a/b ratio than M chloroplasts, 6.15 and 3.12 respectively. The PSI apoprotein (68 kDa) was more abundant in BS than in M thylakoids. Polypeptides belonging to PSII core antenna, are in similar amounts in both types of membranes, but the 45kDa band is more intensive in M thylakoids. Polypeptides in the region of 28-24 kDa of the light-harvesting complex of PSII (LHCII) are also present in both types of chloroplasts, though their amounts are reduced in BS thylakoids. The chlorophyll fluorescence emission spectra in M cells showed the presence of three bands at 686, 695 and 735 nm characteristics of LHCII, PSII core and PSI complexes, respectively. However, in the fluorescence spectrum of agranal plastids, there are almost traces of the band at 695 nm, which belongs to the PSII core complex. The research results revealed that the photochemical activity of PSII in BS chloroplasts is ~5 times less than in the chloroplasts of M cells. The highest PSI activity was found in maize BS chloroplasts.


Subject(s)
Thylakoids , Zea mays , Chlorophyll A/metabolism , Chloroplasts/metabolism , Photosynthesis , Thylakoids/metabolism
13.
Neurosci Lett ; 728: 134898, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32224224

ABSTRACT

Noise pollution is a severe public health problem as continuous exposure to even moderate noise levels between 55-65 dB can lead to various pathologies, including neurological states. In the present study, we assessed the ultrastructural alterations in selective auditory pathways of the rat brain following high intensity white noise exposure. In addition, learning, anxiety-like behavior and locomotor activity were assessed. Adult male rats were exposed to 100 dB noise, one hour daily, for 10 consecutive days. The evaluations were performed on day 11. Exposure to noise did not affect learning or the components of locomotor activity. However, it induced anxiety-like behavior as evidenced by time spent in the closed arm of elevated-plus maze. Concomitantly, ultrastructural changes in medial geniculate body, considered an integral component of classical auditory pathway, as well as in the hippocampus and basolateral amygdala, considered important structures of non-classical auditory pathway were noted. Specifically, noise resulted in neuronal apoptosis, chromatolysis, cytoplasmic organelle destruction, and glial activation in medial geniculate body and hippocampus, as well as mild alterations in amygdala. These results provide further evidence of detrimental consequences following exposure to loud noise.


Subject(s)
Anxiety/physiopathology , Auditory Pathways/physiology , Behavior, Animal/physiology , Noise , Amygdala/physiology , Amygdala/physiopathology , Animals , Anxiety/metabolism , Hippocampus/physiology , Hippocampus/physiopathology , Male , Maze Learning/physiology , Motor Activity/physiology , Rats, Wistar
14.
Int J Dev Neurosci ; 80(2): 139-156, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31997401

ABSTRACT

Short chain fatty acids, produced as gut microbiome metabolites but also present in the diet, exert broad effects in host physiology. Propionic acid (PPA), along with butyrate and acetate, plays a growing role in health, but also in neurological conditions. Increased PPA exposure in humans, animal models and cell lines elicit diverse behavioural and biochemical changes consistent with organic acidurias, mitochondrial disorders and autism spectrum disorders (ASD). ASD is considered a disorder of synaptic dysfunction and cell signalling, but also neuroinflammatory and neurometabolic components. We examined behaviour (Morris water and radial arm mazes) and the ultrastructure of the hippocampus and medial prefrontal cortex (electron microscopy) following a single intraperitoneal (i.p.) injection of PPA (175 mg/kg) in male adolescent rats. PPA treatment showed altered social and locomotor behaviour without changes in learning and memory. Both transient and enduring ultrastructural alterations in synapses, astro- and microglia were detected in the CA1 hippocampal area. Electron microscopic analysis showed the PPA treatment significantly decreased the total number of synaptic vesicles, presynaptic mitochondria and synapses with a symmetric active zone. Thus, brief systemic administration of this dietary and enteric short chain fatty acid produced behavioural and dynamic brain ultrastructural changes, providing further validation of the PPA model of ASD.


Subject(s)
Autistic Disorder/chemically induced , Autistic Disorder/psychology , Behavior, Animal/drug effects , Brain/pathology , Propionates/toxicity , Animals , Autistic Disorder/pathology , Brain/ultrastructure , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/ultrastructure , Disease Models, Animal , Hippocampus/pathology , Hippocampus/ultrastructure , Male , Maze Learning/drug effects , Motor Activity/drug effects , Prefrontal Cortex/pathology , Prefrontal Cortex/ultrastructure , Rats , Rats, Wistar , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...