Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 10(3): e0119540, 2015.
Article in English | MEDLINE | ID: mdl-25763823

ABSTRACT

The purpose of the present work was to progress in our understanding of the pathophysiology of L-2-hydroxyglutaric aciduria, due to a defect in L-2-hydroxyglutarate dehydrogenase, by creating and studying a mouse model of this disease. L-2-hydroxyglutarate dehydrogenase-deficient mice (l2hgdh-/-) accumulated L-2-hydroxyglutarate in tissues, most particularly in brain and testis, where the concentration reached ≈ 3.5 µmol/g. Male mice showed a 30% higher excretion of L-2-hydroxyglutarate compared to female mice, supporting that this dicarboxylic acid is partially made in males by lactate dehydrogenase C, a poorly specific form of this enzyme exclusively expressed in testes. Involvement of mitochondrial malate dehydrogenase in the formation of L-2-hydroxyglutarate was supported by the commensurate decrease in the formation of this dicarboxylic acid when down-regulating this enzyme in mouse l2hgdh-/- embryonic fibroblasts. The concentration of lysine and arginine was markedly increased in the brain of l2hgdh-/- adult mice. Saccharopine was depleted and glutamine was decreased by ≈ 40%. Lysine-α-ketoglutarate reductase, which converts lysine to saccharopine, was inhibited by L-2-hydroxyglutarate with a Ki of ≈ 0.8 mM. As low but significant activities of the bifunctional enzyme lysine-α-ketoglutarate reductase/saccharopine dehydrogenase were found in brain, these findings suggest that the classical lysine degradation pathway also operates in brain and is inhibited by the high concentrations of L-2-hydroxyglutarate found in l2hgdh-/- mice. Pathological analysis of the brain showed significant spongiosis. The vacuolar lesions mostly affected oligodendrocytes and myelin sheats, as in other dicarboxylic acidurias, suggesting that the pathophysiology of this model of leukodystrophy may involve irreversible pumping of a dicarboxylate in oligodendrocytes. Neurobehavioral testing indicated that the mice mostly suffered from a deficit in learning capacity. In conclusion, the findings support the concept that L-2-hydroxyglutaric aciduria is a disorder of metabolite repair. The accumulation of L-2-hydroxyglutarate exerts toxic effects through various means including enzyme inhibition and glial cell swelling.


Subject(s)
Alcohol Oxidoreductases/genetics , Brain Diseases, Metabolic, Inborn/pathology , Brain/pathology , Disease Models, Animal , Glutarates/metabolism , Testis/metabolism , Alcohol Oxidoreductases/metabolism , Animals , Arginine/metabolism , Brain/metabolism , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/metabolism , Cells, Cultured , Female , Ketone Oxidoreductases/metabolism , Lysine/metabolism , Male , Mice , Mice, Knockout
2.
J Inherit Metab Dis ; 36(3): 427-34, 2013 May.
Article in English | MEDLINE | ID: mdl-23296366

ABSTRACT

Enzymes of intermediary metabolism are less specific than what is usually assumed: they often act on metabolites that are not their 'true' substrate, making abnormal metabolites that may be deleterious if they accumulate. Some of these abnormal metabolites are reconverted to normal metabolites by repair enzymes, which play therefore a role akin to the proofreading activities of DNA polymerases and aminoacyl-tRNA synthetases. An illustrative example of such repair enzymes is L-2-hydroxyglutarate dehydrogenase, which eliminates a metabolite abnormally made by a Krebs cycle enzyme. Mutations in L-2-hydroxyglutarate dehydrogenase lead to L-2-hydroxyglutaric aciduria, a leukoencephalopathy. Other examples are the epimerase and the ATP-dependent dehydratase that repair hydrated forms of NADH and NADPH; ethylmalonyl-CoA decarboxylase, which eliminates an abnormal metabolite formed by acetyl-CoA carboxylase, an enzyme of fatty acid synthesis; L-pipecolate oxidase, which repairs a metabolite formed by a side activity of an enzyme of L-proline biosynthesis. Metabolite proofreading enzymes are likely quite common, but most of them are still unidentified. A defect in these enzymes may account for new metabolic disorders.


Subject(s)
Enzymes/metabolism , Enzymes/physiology , Metabolic Networks and Pathways , Metabolism, Inborn Errors/prevention & control , Metabolism/physiology , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/physiology , Acyl Coenzyme A/metabolism , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/physiology , Animals , Humans , Hydro-Lyases/metabolism , Hydro-Lyases/physiology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Metabolism/genetics , Metabolism, Inborn Errors/metabolism
3.
Biochem J ; 431(2): 237-44, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20722631

ABSTRACT

Pseudouridine, the fifth-most abundant nucleoside in RNA, is not metabolized in mammals, but is excreted intact in urine. The purpose of the present work was to search for an enzyme that would dephosphorylate pseudouridine 5'-phosphate, a potential intermediate in RNA degradation. We show that human erythrocytes contain a pseudouridine-5'-phosphatase displaying a Km ≤ 1 µM for its substrate. The activity of the partially purified enzyme was dependent on Mg2+, and was inhibited by Ca2+ and vanadate, suggesting that it belonged to the 'haloacid dehalogenase' family of phosphatases. Its low molecular mass (26 kDa) suggested that this phosphatase could correspond to the protein encoded by the HDHD1 (haloacid dehalogenase-like hydrolase domain-containing 1) gene, present next to the STS (steroid sulfatase) gene on human chromosome Xp22. Purified human recombinant HDHD1 dephosphorylated pseudouridine 5'-phosphate with a kcat of 1.6 s-1, a Km of 0.3 µM and a catalytic efficiency at least 1000-fold higher than that on which it acted on other phosphate esters, including 5'-UMP. The molecular identity of pseudouridine-5'-phosphatase was confirmed by the finding that its activity was negligible (<10% of controls) in extracts of B-cell lymphoblasts or erythrocytes from X-linked ichthyosis patients harbouring a combined deletion of the STS gene (the X-linked ichthyosis gene) and the HDHD1 gene. Furthermore, pseudouridine-5'-phosphatase activity was 1.5-fold higher in erythrocytes from women compared with men, in agreement with the HDHD1 gene undergoing only partial inactivation in females. In conclusion, HDHD1 is a phosphatase specifically involved in dephosphorylation of a modified nucleotide present in RNA.


Subject(s)
Gene Deletion , Ichthyosis, X-Linked/enzymology , Ichthyosis, X-Linked/genetics , Phosphoric Monoester Hydrolases/metabolism , Proteins/genetics , Proteins/metabolism , Adenosine/metabolism , Amino Acid Sequence , Cell Extracts , Cell Line , Chromatography, Gel , Chromatography, Ion Exchange , Erythrocytes/enzymology , Esters/metabolism , Female , Humans , Male , Molecular Sequence Data , Nucleotidases , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/isolation & purification , Proteins/chemistry , Pseudouridine , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sex Characteristics , Substrate Specificity
4.
FEBS J ; 274(17): 4360-74, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17681011

ABSTRACT

The purpose of this work was to identify the function of bacterial homologues of fructosamine 3-kinase (FN3K), a mammalian enzyme responsible for the removal of fructosamines from proteins. FN3K homologues were identified in approximately 200 (i.e. approximately 27%) of the sequenced bacterial genomes. In 11 of these genomes, from phylogenetically distant bacteria, the FN3K homologue was immediately preceded by a low-molecular-weight protein-tyrosine-phosphatase (LMW-PTP) homologue, which is therefore probably functionally related to the FN3K homologue. Five bacterial FN3K homologues (from Escherichia coli, Enterococcus faecium, Lactobacillus plantarum, Staphylococcus aureus and Thermus thermophilus) were overexpressed in E. coli, purified and their kinetic properties investigated. Four were ribulosamine/erythrulosamine 3-kinases acting best on free lysine and cadaverine derivatives, but not on ribulosamines bound to the alpha amino group of amino acids. They also phosphorylated protein-bound ribulosamines or erythrulosamines, but not protein-bound fructosamines, therefore having properties similar to those of mammalian FN3K-related protein. The E. coli FN3K homologue (YniA) was inactive on all tested substrates. The LMW-PTP of T. thermophilus, which forms an operon with an FN3K homologue, and an LMW-PTP of S. aureus (PtpA) were overexpressed in E. coli, purified and shown to dephosphorylate not only protein tyrosine phosphates, but protein ribulosamine 5-phosphates as well as free ribuloselysine 5-phosphate and erythruloselysine 4-phosphate. These LMW-PTPs were devoid of ribulosamine 3-phosphatase activity. It is concluded that most bacterial FN3K homologues are ribulosamine/erythrulosamine 3-kinases. They may serve, in conjunction with a phosphatase, to deglycate products of glycation formed from ribose 5-phosphate or erythrose 4-phosphate.


Subject(s)
Arabidopsis Proteins/metabolism , Bacteria/enzymology , Bacterial Proteins/metabolism , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Amino Acid Sequence , Bacteria/classification , Bacteria/genetics , Bacterial Proteins/chemistry , Genome, Bacterial , Molecular Sequence Data , Molecular Weight , Sequence Homology, Amino Acid , Species Specificity
5.
Proc Natl Acad Sci U S A ; 101(48): 16849-54, 2004 Nov 30.
Article in English | MEDLINE | ID: mdl-15548604

ABSTRACT

The purpose of this study was to identify the biochemical and genetic defect in L-2-hydroxyglutaric aciduria, a neurometabolic disorder characterized by the presence of elevated concentrations of L-2-hydroxyglutaric acid in urine, plasma, and cerebrospinal fluid. Evidence is provided for the existence in rat tissues of a FAD-dependent enzyme catalyzing specifically the oxidation of L-2-hydroxyglutarate to alpha-ketoglutarate. This enzyme is mainly expressed in liver and kidney but also at lower levels in heart, brain, and other tissues. Subcellular fractionation indicates that the liver enzyme is present in mitochondria, where it is bound to membranes. Based on this information, a database search led to the identification of a gene encoding a human hypothetical protein homologous to bacterial FAD-dependent malate dehydrogenases and targeted to mitochondria. The gene encoding this protein, present on chromosome 14q22.1, was found to be in a region homozygous in patients with L-2-hydroxyglutaric aciduria from two consanguineous families. Three mutations that replaced a highly conserved residue (Lys-71-Glu and Glu-176-Asp) or removed exon 9 were identified in homozygous state in patients from three distinct families and were found to cosegregate with the disease. It is concluded that L-2-hydroxyglutarate is normally metabolized to alpha-ketoglutarate in mammalian tissues and that L-2-hydroxyglutaric aciduria is caused by mutations in the gene that most likely encodes L-2-hydroxyglutarate dehydrogenase. The pathological findings observed in this metabolic disorder must therefore be due to a toxic effect of L-2-hydroxyglutarate on the central nervous system.


Subject(s)
Alcohol Oxidoreductases/genetics , Flavin-Adenine Dinucleotide/metabolism , Glutarates/urine , Mutation , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Female , Humans , Male , Molecular Sequence Data , Pedigree , Sequence Homology, Amino Acid , Subcellular Fractions/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL