Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38869584

ABSTRACT

This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50-600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1-10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 µg/L at 10 mg/L and 892.6 µg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research.

2.
Int J Biol Macromol ; 256(Pt 1): 128369, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000592

ABSTRACT

Synthesis of 0.4 ± 0.03 g/L per day of pure and porous bacterial cellulose (BC) scaffolds (scaffBC) and BC scaffolds modified with gelatin (scaffBC/Gel) was carried out using the Medusomyces gisevii Sa-28 bacterial strain. FT-IR spectroscopy and X-ray diffraction analysis showed that the scaffolds largely consist of crystalline cellulose I (Iα, Iß). Heating of BC with gelatin to 60 °C with subsequent lyophilization led to its modification by adsorption and binding of low-molecular fractions of gelatin and the formation of small pores between the fibers, which increased the biocompatibility and solubility of BC. The solubility of scaffBC and scaffBC/Gel was 20.8 % and 44.4 %, respectively, which enhances degradation in vivo. Light microscopy, scanning electron microscopy, and microcomputed tomography showed a uniform distribution of pores with a diameter of 100-500 µm. The chicken chorioallantoic membrane (CAM) model and subcutaneous implantation in rats confirmed low immunogenicity and intense formation of collagen fibers in both scaffolds and active germination of new blood vessels in scaffBC and scaffBC/Gel. The proliferative cellular activity of fibroblasts confirmed the safety of scaffolds. Taken together, the results obtained show that scaffBC/Gel can be used for the engineering of hard and soft tissues, which opens opportunities for further research.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Rats , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Gelatin/chemistry , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Microtomography , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Porosity
3.
Sci Rep ; 13(1): 6453, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081125

ABSTRACT

The purpose of this work was to study the effect of selenium nanoparticles (Se NPs) on the biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.) We used seeds of Hordéum vulgáre L. with reduced morphofunctional characteristics. For the experiment, Se NPs were synthesized and stabilized with didecyldimethylammonium chloride. It was found that Se NPs have a spherical shape and a diameter of about 50 nm. According to dynamic light scattering data, the average hydrodynamic radius of the particles was 28 ± 8 nm. It is observed that the nanoparticles have a positive ζ-potential (+ 27.3 mV). For the experiment, we treated Hordéum vulgáre L. seeds with Se NPs (1, 5, 10 and 20 mg/L). The experiment showed that treatment of Hordéum vulgáre L. seeds with Se NPs has the best effect on the length of roots and sprout at concentration of 5 mg/L and on the number and thickness of roots at 10 mg/L. Germinability and germination energy of Hordéum vulgáre L. seeds were higher in group treated with 5 mg/L Se NPs. Analysis of macrophotographs of samples, histological sections of roots and 3D visualization of seeds by microcomputing tomography confirmed the best effect at 5 mg/L Se NPs. Moreover, no local destructions were detected at concentrations > 5 mg/L, which is most likely due to the inhibition of regulatory and catalytic processes in the germinating seeds. the treatment of Hordéum vulgáre L. seeds with > 5 mg/L Se NPs caused significant stress, coupled with intensive formation of reactive oxygen species, leading to a reorientation of root system growth towards thickening. Based on the results obtained, it was concluded that Se NPs at concentrations > 5 mg/L had a toxic effect. The treatment of barley seeds with 5% Se NPs showed maximum efficiency in the experiment, which allows us to further consider Se NPs as a stimulator for the growth and development of crop seeds under stress and reduced morphofunctional characteristics.


Subject(s)
Hordeum , Nanoparticles , Selenium , Selenium/pharmacology , Seeds , Germination
4.
Curr Pharm Des ; 29(14): 1105-1120, 2023.
Article in English | MEDLINE | ID: mdl-37073656

ABSTRACT

INTRODUCTION: Apoptosis and autophagy are the two fundamental processes involved in maintaining homeostasis, and a common stimulus may initiate the processes. Autophagy has been implicated in various diseases, including viral infections. Genetic manipulations leading to altered gene expression might be a strategy to check virus infection. AIM: Determination of molecular patterns, relative synonymous codon usage, codon preference, codon bias, codon pair bias, and rare codons so that genetic manipulation of autophagy genes may be done to curb viral infection. METHODS: Using various software, algorithms, and statistical analysis, insights into codon patterns were obtained. A total of 41 autophagy genes were envisaged as they are involved in virus infection. RESULTS: The A/T and G/C ending codons are preferred by different genes. AAA-GAA and CAG-CTG codon pairs are the most abundant codon pairs. CGA, TCG, CCG, and GCG are rarely used codons. CONCLUSION: The information generated in the present study helps manipulate the gene expression level of virus infection-associated autophagy genes through gene modification tools like CRISPR. Codon deoptimization for reducing while codon pair optimization for enhancing is efficacious for HO-1 gene expression.


Subject(s)
Virus Diseases , Humans , Codon/genetics , Virus Diseases/genetics , Evolution, Molecular
5.
Pathogens ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839597

ABSTRACT

Hepatitis C virus (HCV) is enveloped RNA virus, encoding for a polyprotein that is processed by cellular proteases. The virus is responsible for liver cirrhosis, allograft rejection, and human hepatocellular carcinoma. Based on studies including compositional analysis, odds ratio analysis, parity analysis, skew analysis, relative synonymous codon usage, codon bias, and protein properties, it was evident that codon usage bias in HCV is dependent upon the nucleotide composition. Codon context analysis revealed CTC-CTG as a preferred codon pair. While CGA and CGT codons were rare, none of the codons were rare in HCV-like viruses envisaged in the present study. Many of the preferred codon pairs were valine amino acid-initiated, which possibly infers viral infectivity; hence the role of selection forces appears to act on the HCV genome, which was further validated by neutrality analysis where selection accounted for 87.28%, while mutation accounted for 12.72% force shaping codon usage. Furthermore, codon usage was correlated with the length of the genome. HCV viruses prefer valine-initiated codon pairs, while HCV-like viruses prefer alanine-initiated codon pairs. The HCV host range is very narrow and is confined to only humans and chimpanzees. Based on indices including codon usage correlation analysis, similarity index, and relative codon deoptimization index, it is evident in the study that the chimpanzee is the primary host of the virus. The present study helped elucidate the preferred host for HCV. The information presented in the study paved the way for generating an attenuated vaccine candidate through viral recoding, with finely tuned nucleotide composition and a perfect balance of preferred and rare codons.

6.
Vaccines (Basel) ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36851364

ABSTRACT

The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020 and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine is required. In the present study, we envisaged molecular patterns in the structural genes' spike, nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor tRNA and preferred codons from the structural genes. We found specific patterns, including a significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural genes of the delta strain. The interaction between the host tRNA pool and preferred codons of the envisaged structural genes revealed that the virus preferred the codons for those suboptimal numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the translation rate low to facilitate the correct folding of viral proteins. The information generated in the study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare codons, and disrupting favored codons. It found that disrupting favored codons is a better approach to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.

7.
Mol Neurobiol ; 60(4): 2252-2267, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36637744

ABSTRACT

Neurodegenerative disorders are often a culmination of the accumulation of abnormally folded proteins and defective organelles. Autophagy is a process of removing these defective proteins, organelles, and harmful substances from the body, and it works to maintain homeostasis. If autophagic removal of defective proteins has interfered, it affects neuronal health. Some of the autophagic genes are specifically found to be associated with neurodegenerative phenotypes. Non-functional, mutated, or gene copies having silent mutations, often termed synonymous variants, might explain this. However, these synonymous variant which codes for exactly similar proteins have different translation rates, stability, and gene expression profiling. Hence, it would be interesting to study the pattern of synonymous variant usage. In the study, synonymous variant usage in various transcripts of autophagic genes ATG5, ATG7, ATG8A, ATG16, and ATG17/FIP200 reported to cause neurodegeneration (if dysregulated) is studied. These genes were analyzed for their synonymous variant usage; nucleotide composition; any possible nucleotide skew in a gene; physical properties of autophagic protein including GRAVY and AROMA; hydropathicity; instability index; and frequency of acidic, basic, neutral amino acids; and gene expression level. The study will help understand various evolutionary forces acting on these genes and the possible augmentation of a gene if showing unusual behavior.


Subject(s)
Evolution, Molecular , Silent Mutation , Codon , Nucleotides/genetics
8.
Vaccines (Basel) ; 10(11)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36366382

ABSTRACT

The overexpression of SARS-CoV-2 primary receptors and co-receptors (ACE2, TMPRSS2, FURIN, and CD147) enhance the likeliness of SARS-CoV-2 infection. The genes for same receptors are overexpressed in the periodontal tissues of periodontitis patients. On the other hand, BMAL1 is recognized to play a crucial role in regulating pulmonary inflammation and enhancing susceptibility to viral infection. Silenced BMAL1 disrupts circadian transcriptional regulations, enhances vulnerability to SARS-CoV-2 infections, and may trigger the further production of TNF-α and other pro-inflammatory cytokines that propagate the cytokine storm and exacerbate periodontal inflammation. Therefore ACE2, TMPRSS2, FURIN, CD147, and BMAL1 are the crossroads between SARS-CoV-2 and Periodontitis genes. The enhanced expression of ACE2, TMPRSS2, FURIN, and CD147 and the diminished expression of BMAL1 may be a strategy to check both ailments simultaneously. In gene manipulation techniques, oligos are introduced, which contain all the necessary information to manipulate gene expression. The data are derived from the studies on genes' molecular patterns, including nucleotide composition, dinucleotide patterns, relative synonymous codon usage, codon usage bias, codon context, and rare and abundant codons. Such information may be used to manipulate the overexpression and underexpression of the genes at the time of SARS-CoV-2 infection and periodontitis to mitigate both ailments simultaneously; it can be explored to uncover possible future treatments.

9.
Genes (Basel) ; 13(11)2022 10 24.
Article in English | MEDLINE | ID: mdl-36360171

ABSTRACT

Genome-wide association studies showed the relationship of NIN, ABHD12B, WHAMM, AP3B2, and SIGLEC5 with chronic periodontitis. The study's objective was to investigate different molecular patterns and evolutionary forces acting on the mentioned genes. The investigation of molecular patterns encompasses the study of compositional parameters, expression profile, physical properties of genes, codon preferences, degree of codon bias, determination of the most influential codons, and assessment of actions of evolutionary forces, such as mutations and natural selection. The overall compositional analysis revealed the dominance of A and G nucleotides compared to T and C. A relatively low codon usage bias is observed. The CTG codon is the most overused codon, followed by TCC. The genes, AP3B2 and SIGLEC5, preferred GC-ending codons, while NIN, ABHD12B, and WHAMM preferred AT-ending codons. The presence of directional mutational force and natural selection was found to operate codon usage in genes envisaged, and selective forces were dominant over mutational forces. Apart from mutation and selection forces, compositional constraints also played imperative roles. The study enriched our knowledge of specific molecular patterns associated with the set of genes significantly associated with chronic periodontitis. Further studies are warranted to identify more genetic signatures associated with the disease.


Subject(s)
Chronic Periodontitis , Humans , Chronic Periodontitis/genetics , Genome-Wide Association Study , Codon/genetics , Selection, Genetic , Codon Usage , Membrane Proteins/genetics , Microtubule-Associated Proteins/genetics
10.
Micromachines (Basel) ; 13(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35888922

ABSTRACT

In this work, we obtained silver nanoparticles stabilized with polyvinylpyrrolidone, ranging in size from 70 to 110 nm, which exhibits good crystallinity and anisotropic structure. For the first time, we studied the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra. Our results showed that at molar ratios of Ag:H2O2 = 1:1 and 1:5, dependences of changes in the intensity, position and half-width of the absorption band of the plasmon resonance are rectilinear. In vivo studies of silver nanoparticles have shown that silver nanoparticles belong to the toxicity class III (moderately hazardous substance) and to the third group according to the degree of accumulation. We established that silver nanoparticles and oxidized silver nanoparticles form a uniform layer on the surface of the suture material. We found that the use of the suture material with silver nanoparticles and oxidized silver nanoparticles does not cause allergic reactions in the organisms of laboratory animals.

11.
Molecules ; 27(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35164026

ABSTRACT

Chlorophytum genus has been extensively studied due to its diverse biological activities. We evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques, the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents of the methanolic extract of leaves of C. comosum and biological properties of its different fractions. Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents. One of the identified compounds, 4'-methylphenyl-1C-sulfonyl-ß-d-galactoside, was not detected earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive constituents. The water fraction of the extract exhibited promising antitumor potential based on a high ratio of HeLa vs. Vero cytotoxicity.


Subject(s)
Asparagaceae/chemistry , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Cell Survival/drug effects , Chemical Fractionation , Chlorocebus aethiops , Gas Chromatography-Mass Spectrometry , HeLa Cells , Humans , Methanol/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Toxicity Tests , Vero Cells
12.
Food Sci Nutr ; 9(10): 5648-5669, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646534

ABSTRACT

Finding new, safe strategies to prevent and control rheumatoid arthritis is an urgent task. Bioactive peptides and peptide-rich protein hydrolyzate represent a new trend in the development of functional foods and nutraceuticals. The resulting tissue hydrolyzate of the chicken embryo (CETH) has been evaluated for acute toxicity and tested against chronic arthritis induced by Freund's full adjuvant (modified Mycobacterium butyricum) in rats. The antiarthritic effect of CETH was studied on the 28th day of the experiment after 2 weeks of oral administration of CETH at doses of 60 and 120 mg/kg body weight. Arthritis was evaluated on the last day of the experiment on the injected animal paw using X-ray computerized microtomography and histopathology analysis methods. The CETH effect was compared with the non-steroidal anti-inflammatory drug diclofenac sodium (5 mg/kg). Oral administration of CETH was accompanied by effective dose-dependent correction of morphological changes caused by the adjuvant injection. CETH had relatively high recovery effects in terms of parameters for reducing inflammation, inhibition of osteolysis, reduction in the inflammatory reaction of periarticular tissues, and cartilage degeneration. This study presents for the first time that CETH may be a powerful potential nutraceutical agent or bioactive component in the treatment of rheumatoid arthritis.

13.
Nanomaterials (Basel) ; 10(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967152

ABSTRACT

The study focuses on in vitro tracing of some fundamental changes that emerge in teeth at the initial stage of caries development using multiple approaches. The research was conducted on a mostly sound maxillary molar tooth but with a clearly visible natural proximal white spot lesion (WSL). Values of mineral density, reduced Young's modulus, indentation hardness and creep as well as the molecular composition and surface microstructure of the WSL and bordering dentine area were studied. The results obtained were compared to those of sound enamel and dentine on the same tooth. A decrease of mechanical properties and mineral density both for the WSL and bordering dentine was detected in comparison to the sound counterparts, as well as increase of creep for the enamel WSL. Differences in molecular composition and surface microstructure (including the indenter impressions) were found and described. WSL induces a serious change in the state of not only the visually affected enamel but also surrounding visually intact enamel and dentine in its vicinity. The results provide the basis for future studies of efficacy of minimal invasive treatments of caries.

14.
Foods ; 9(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046069

ABSTRACT

In food biotechnology, Pleurotus ostreatus is of great interest as a source of natural antioxidants and angiotensin-converting enzyme (ACE) inhibitors. However, research in this area has not yet been completed. The effect of various drying methods on the structural properties and the rehydration capacity of mushrooms was investigated in this paper. The content of secondary metabolites, the peptide profile, and the antioxidative effect and ACE inhibitory activity of dry mushrooms were investigated in vitro, simulating the process of gastrointestinal digestion. X-ray microtomography has confirmed that structure of lyophilic and sun-dried mushrooms is dominated by open pores, and in mushrooms dried with hot air and microwave, closed pores. Experiments have shown that the conditions of freeze drying and sun drying of Pleurotus ostreatus provide a higher rehydration capacity of dried mushrooms. The maximum activity of radical absorption of the oyster mushroom after microwave drying was observed. The iron restoring capacity of the mushrooms is maximally maintained with microwave drying and hot-air drying. The properties of the antioxidant product with an emphasis on the high activity of inhibiting lipid oxidation of the mushroom maximized after drying in the sun. Mushrooms dried lyophilically and in the sun showed the highest ACE inhibitory activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...