Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Electromagn Biol Med ; 43(1-2): 31-45, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38369844

ABSTRACT

This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a SAGAN optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time.The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging. The accuracy acquired for the brain tumor identification from the proposed method is 99.29%. The proposed BTC-SAGAN-CHA-MRI technique achieves 18.29%, 14.09% and 7.34% higher accuracy and 67.92%,54.04%, and 59.08% less Computation Time when analyzed to the existing models, like Brain tumor diagnosis utilizing deep learning convolutional neural network with transfer learning approach (BTC-KNN-SVM-MRI); M3BTCNet: multi model brain tumor categorization under metaheuristic deep neural network features optimization (BTC-CNN-DEMFOA-MRI), and efficient method depending upon hierarchical deep learning neural network classifier for brain tumour categorization (BTC-Hie DNN-MRI) respectively.


This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a Self-Attention based Generative Adversarial Network (SAGAN) optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time. The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging.


Subject(s)
Algorithms , Brain Neoplasms , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/classification , Brain Neoplasms/pathology , Humans , Image Processing, Computer-Assisted/methods , Color , Neural Networks, Computer , Deep Learning
2.
Article in English | MEDLINE | ID: mdl-37982236

ABSTRACT

The significant research carried out on medical healthcare networks is giving computing innovations lots of space to produce the most recent innovations. Pancreatic cancer, which ranks among of the most common tumors that are thought to be fatal and unsuspected since it is positioned in the region of the abdomen beyond the stomach and can't be adequately treated once diagnosed. In radiological imaging, such as MRI and CT, computer-aided diagnosis (CAD), quantitative evaluations, and automated pancreatic cancer classification approaches are routinely provided. This study provides a dynamic weighted ensemble framework for pancreatic cancer classification inspired by game theory. Grey Level Co-occurrence Matrix (GLCM) is utilized for feature extraction, together with Gaussian kernel-based fuzzy rough sets theory (GKFRST) for feature reduction and the Random Forest (RF) classifier for categorization. The ResNet50 and VGG16 are used in the transfer learning (TL) paradigm. The combination of the outcomes from the TL paradigm and the RF classifier paradigm is suggested using an innovative ensemble classifier that relies on the game theory method. When compared with the current models, the ensemble technique considerably increases the pancreatic cancer classification accuracy and yields exceptional performance. The study improves the categorization of pancreatic cancer by using game theory, a mathematical paradigm that simulates strategic interactions. Because game theory has been not frequently used in the discipline of cancer categorization, this research is distinctive in its methodology.

3.
Entropy (Basel) ; 24(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36359691

ABSTRACT

Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.) is used in channel conditions where time-varying features are required. The existing channel estimation techniques are highly complicated. A channel estimation algorithm is needed to estimate the received signal's correctness. In order to resolve this complexity in C.E. methodologies, this paper developed an Improved Channel Estimation Algorithm integrated with DFT-LS-WIENER (ICEA-DA). The Least Square (L.S.) and Minimum Mean Square Error (MMSE) algorithms also use the Discrete Fourier Transform (DFT)-based channel estimation method. The DFT-LS-WIENER channel estimation approach is recommended for better BER performance. The input signal is modulated in the transmitter module using the Quadrature Phase Shift Keying (QPSK) technique, pulse modeling, and least squares concepts. The L.S. Estimation technique needs the channel consistent throughout the estimation period. DFT joined with L.S. gives higher estimation precision and limits M.S.E. and BER. Experimental analysis of the proposed state-of-the-art method shows that DFT-LS-WIENER provides superior performance in terms of symbol error rate (S.E.R.), bit error rate (BER), channel capacity (CC), and peak signal-to-noise (PSNR). At 15 dB SNR, the proposed DFT-LS-WIENER techniques reduce the BER of 48.19%, 38.19%, 14.8%, and 14.03% compared to L.S., LS-DFT, MMSE, and MMSE-DFT. Compared to the conventional algorithm, the proposed DFT-LS-WIENER outperform them.

SELECTION OF CITATIONS
SEARCH DETAIL
...