Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353487

ABSTRACT

Multi-Target Inhibitors are the upcoming frontrunners of the antibiotic world as they provide significant advantage over drug resistance development. Antibacterial drug discovery research, requires more robust and innovative approaches such as multi-target inhibiting drugs, which over comes the innate hurdles in the field of antibiotics. In this current study, a curated set of 5,112 phytochemical molecules were virtually screened for its multi-target inhibition potential against 7 antibacterial protein drug-targets. Behenic Acid was identified to be the most significant phytochemical molecule with potential to inhibit Catalase Peroxidase (KatG), Adenylosuccinate Synthetase (ADSS) and Pyridoxine 5'-Phosphate Synthase (PdxJ), based on SeeSAR and AutoDock Vina results. Further, the inhibition potential of Behenic Acid was validated using 500 ns Molecular Dynamics (MD) Simulation based on Desmond analysis. Behenic Acid was further investigated in-vitro using agar-well-diffusion and Minimal Inhibitory Concentration (MIC) assay, where it demonstrated 20 ± 1mm zone-of-inhibition and 50 µg/ml MIC value against both Vibrio parahaemolyticus and Aeromonas hydrophila. Zebrafish based investigations was carried to confirm the in-vivo antibacterial efficacy of Behenic Acid. It was observed that, there is a progressive dose-dependent recovery from the bacterial infection, with highest recovery and survival observed in fishes fed with 100 µg/day of Behenic Acid. Results of the in-vitro and in-vivo assays strongly support the in-silico prediction of the antibacterial activity of Behenic Acid. Based on the results presented in this study, it is concluded that, Behenic Acid is a strong multi-target antibacterial phytochemical, that exerts antagonism against aquaculture bacterial pathogens such as V. parahaemolytics and A. hydrophila.Communicated by Ramaswamy H. Sarma.

2.
Heliyon ; 9(9): e19496, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662771

ABSTRACT

Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.

SELECTION OF CITATIONS
SEARCH DETAIL
...