Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
2.
F1000Res ; 11: 406, 2022.
Article in English | MEDLINE | ID: mdl-36531254

ABSTRACT

Introduction Pollution of air in urban cities across the world has been steadily increasing in recent years. An increasing trend in particulate matter, PM 2.5, is a threat because it can lead to uncontrollable consequences like worsening of asthma and cardiovascular disease. The metric used to measure air quality is the air pollutant index (API). In Malaysia, machine learning (ML) techniques for PM 2.5 have received less attention as the concentration is on predicting other air pollutants. To fill the research gap, this study focuses on correctly predicting PM 2.5 concentrations in the smart cities of Malaysia by comparing supervised ML techniques, which helps to mitigate its adverse effects. Methods In this paper, ML models for forecasting PM 2.5 concentrations were investigated on Malaysian air quality data sets from 2017 to 2018. The dataset was preprocessed by data cleaning and a normalization process. Next, it was reduced into an informative dataset with location and time factors in the feature extraction process. The dataset was fed into three supervised ML classifiers, which include random forest (RF), artificial neural network (ANN) and long short-term memory (LSTM). Finally, their output was evaluated using the confusion matrix and compared to identify the best model for the accurate prediction of PM 2.5. Results Overall, the experimental result shows an accuracy of 97.7% was obtained by the RF model in comparison with the accuracy of ANN (61.14%) and LSTM (61.77%) in predicting PM 2.5. Discussion RF performed well when compared with ANN and LSTM for the given data with minimum features. RF was able to reach good accuracy as the model learns from the random samples by using decision tree with the maximum vote on the predictions.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Environmental Monitoring/methods , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Machine Learning
3.
Plants (Basel) ; 10(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670503

ABSTRACT

This study assessed the potential of Bacillus endophyticus PB3, Bacillus altitudinis PB46, and Bacillus megaterium PB50 to induce drought tolerance in a susceptible rice cultivar. The leaves of the potted rice plants subjected to physical drought stress for 10 days during the flowering stage were inoculated with single-strain suspensions. Control pots of irrigated and drought-stressed plants were included in the experiment for comparison. In all treatments, the plant stress-related physiochemical and biochemical changes were examined and the expression of six stress-responsive genes in rice leaves was evaluated. The colonization potential on the surface of the rice leaves and stomata of the most successful strain in terms of induced tolerance was confirmed in the gnotobiotic experiment. The plants sprayed with B. megaterium PB50 showed an elevated stress tolerance based on their higher relative water content and increased contents of total sugars, proteins, proline, phenolics, potassium, calcium, abscisic acid, and indole acetic acid, as well as a high expression of stress-related genes (LEA, RAB16B, HSP70, SNAC1, and bZIP23). Moreover, this strain improved yield parameters compared to other treatments and also confirmed its leaf surface colonization. Overall, this study indicates that the foliar application of B. megaterium PB50 can induce tolerance to drought stress in rice.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-976062

ABSTRACT

@#High-quality clinical evidence, derived from well-designed and implemented clinical trials, serves to advance clinical care and to allow physicians to provide the most effective treatments to their patients. The field of ophthalmology, including the subspecialty of neuro-ophthalmology, abounds with such high-quality clinical trials that provide Level 1 clinical evidence. This review article summarizes the research design, key findings, and clinical relevance of select monumental clinical studies in neuro-ophthalmology with the primary goal of providing the readers with the rationale for current standard of care of various neuro-ophthalmic diseases. This includes the Optic Neuritis Treatment Trial, Ischemic Optic Neuropathy Decompression Trial, Idiopathic Intracranial Hypertension Treatment Trial, Rescue of Hereditary Optic Disease Outpatient Study, and Controlled High-Risk Avonex® Multiple Sclerosis Study


Subject(s)
Optic Neuritis , Optic Neuropathy, Ischemic , Intracranial Hypertension
SELECTION OF CITATIONS
SEARCH DETAIL
...