Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 150: 106179, 2022 11.
Article in English | MEDLINE | ID: mdl-36252367

ABSTRACT

Cytopathologists examine microscopic images obtained at various magnifications to identify malignancy in effusions. They locate the malignant cell clusters at a low magnification and then zoom in to investigate cell-level features at a high magnification. This study predicts the malignancy at low magnification levels such as 4X and 10X in effusion cytology images to reduce scanning time. However, the most challenging problem is annotating the low magnification images, particularly the 4X images. This paper extends two semi-supervised learning (SSL) models, MixMatch and FixMatch, for semantic segmentation. The original FixMatch and MixMatch algorithms are designed for classification tasks. While performing image augmentation, the generated pseudo labels are spatially altered. We introduce reverse augmentation to compensate for the effect of the spatial alterations. The extended models are trained using labelled 10X and unlabelled 4X images. The average F-score of benign and malignant pixels on the predictions of 4X images is improved approximately by 9% for both Extended MixMatch and Extended FixMatch respectively compared with the baseline model. In the Extended MixMatch, 62% sub-regions of low magnification images are eliminated from scanning at a higher magnification, thereby saving scanning time.


Subject(s)
Neoplasms , Semantics , Humans , Cytological Techniques , Algorithms , Supervised Machine Learning , Image Processing, Computer-Assisted
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1412-1415, 2020 07.
Article in English | MEDLINE | ID: mdl-33018254

ABSTRACT

Ki-67 labelling index is a biomarker which is used across the world to predict the aggressiveness of cancer. To compute the Ki-67 index, pathologists normally count the tumour nuclei from the slide images manually; hence it is timeconsuming and is subject to inter pathologist variability. With the development of image processing and machine learning, many methods have been introduced for automatic Ki-67 estimation. But most of them require manual annotations and are restricted to one type of cancer. In this work, we propose a pooled Otsu's method to generate labels and train a semantic segmentation deep neural network (DNN). The output is postprocessed to find the Ki-67 index. Evaluation of two different types of cancer (bladder and breast cancer) results in a mean absolute error of 3.52%. The performance of the DNN trained with automatic labels is better than DNN trained with ground truth by an absolute value of 1.25%.


Subject(s)
Deep Learning , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted , Ki-67 Antigen , Machine Learning
3.
IEEE Rev Biomed Eng ; 12: 254-268, 2019.
Article in English | MEDLINE | ID: mdl-29994405

ABSTRACT

Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies.


Subject(s)
Bone Diseases, Metabolic/diagnostic imaging , Diagnostic Imaging/trends , Osteoporosis/diagnostic imaging , Osteoporotic Fractures/diagnostic imaging , Algorithms , Bone Density/physiology , Bone Diseases, Metabolic/physiopathology , Hip Fractures/diagnostic imaging , Hip Fractures/physiopathology , Humans , Osteoporosis/physiopathology , Osteoporotic Fractures/physiopathology , Risk Assessment , Risk Factors , Spinal Fractures/diagnostic imaging , Spinal Fractures/physiopathology
4.
Comput Med Imaging Graph ; 68: 25-39, 2018 09.
Article in English | MEDLINE | ID: mdl-29885566

ABSTRACT

Osteoporosis is a bone disorder characterized by bone loss and decreased bone strength. The most widely used technique for detection of osteoporosis is the measurement of bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA). But DXA scans are expensive and not widely available in low-income economies. In this paper, we propose a low cost pre-screening tool for the detection of low bone mass, using cortical radiogrammetry of third metacarpal bone and trabecular texture analysis of distal radius from hand and wrist radiographs. An automatic segmentation algorithm to automatically locate and segment the third metacarpal bone and distal radius region of interest (ROI) is proposed. Cortical measurements such as combined cortical thickness (CCT), cortical area (CA), percent cortical area (PCA) and Barnett Nordin index (BNI) were taken from the shaft of third metacarpal bone. Texture analysis of trabecular network at the distal radius was performed using features obtained from histogram, gray level Co-occurrence matrix (GLCM) and morphological gradient method (MGM). The significant cortical and texture features were selected using independent sample t-test and used to train classifiers to classify healthy subjects and people with low bone mass. The proposed pre-screening tool was validated on two ethnic groups, Indian sample population and Swiss sample population. Data of 134 subjects from Indian sample population and 65 subjects from Swiss sample population were analysed. The proposed automatic segmentation approach shows a detection accuracy of 86% in detecting the third metacarpal bone shaft and 90% in accurately locating the distal radius ROI. Comparison of the automatic radiogrammetry to the ground truth provided by experts show a mean absolute error of 0.04 mm for cortical width of healthy group, 0.12 mm for cortical width of low bone mass group, 0.22 mm for medullary width of healthy group, and 0.26 mm for medullary width of low bone mass group. Independent sample t-test was used to select the most discriminant features, to be used as input for training the classifiers. Pearson correlation analysis of the extracted features with DXA-BMD of lumbar spine (DXA-LS) shows significantly high correlation values. Classifiers were trained with the most significant features in the Indian and Swiss sample data. Weighted KNN classifier shows the best test accuracy of 78% for Indian sample data and 100% for Swiss sample data. Hence, combined automatic radiogrammetry and texture analysis is shown to be an effective low cost pre-screening tool for early diagnosis of osteoporosis.


Subject(s)
Early Diagnosis , Hand/diagnostic imaging , Hand/physiopathology , Osteoporosis/diagnostic imaging , Radiography , Adult , Algorithms , Bone Density , Databases, Factual , Female , Humans , India , Middle Aged , Switzerland , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...