Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 154: 111045, 2020 May.
Article in English | MEDLINE | ID: mdl-32174496

ABSTRACT

Concentrations of trace elements (arsenic, cadmium, mercury, and lead) in tissues (muscle, gills, and digestive gland) of three commercially exploited crustaceans (Portunus sanguinolentus, Charybdis natator, and Penaeus semisulcatus) and three cephalopods (Doryteuthis sibogae, Sepia pharaonis, and Cistopus indicus) were examined. The animals were captured in the waters of Thoothukudi, and the tissues of six individuals of each species were analyzed using ICP-MS. The highest concentrations of arsenic (16.5 µg/g) and mercury (0.052 µg/g) were recorded in the digestive gland of C. natator, and cadmium (69.9 µg/g) and lead (0.351 µg/g) in the digestive gland of S. pharaonis. The edible portion of the crustaceans and cephalopods contained lower concentrations of trace elements, and these were below allowable limits set by the European Union. The edible parts of the investigated samples are safe for human consumption, but accidental contamination of the edible tissues with material from the digestive glands could lead to concerns relating to metal toxicity.


Subject(s)
Cephalopoda/metabolism , Crustacea/metabolism , Mercury , Trace Elements/metabolism , Water Pollution/statistics & numerical data , Animals , Cadmium , Environmental Monitoring , Food Contamination/statistics & numerical data , Humans , India , Seafood/statistics & numerical data
2.
Carbohydr Polym ; 120: 102-14, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25662693

ABSTRACT

Levan is a homopolymer of fructose naturally obtained from both plants and microorganisms. Microbial levans are more advantageous, economical and industrially feasible with numerous applications. Bacterial levans are much larger than those produced by plants with multiple branches and molecular weights ranging from 2 to 100 million Da. However levans from plants generally have molecular weights ranging from about 2000 to 33,000 Da. Microbial levans have wide range of applications in food, medicine, pharmaceutical, cosmetic and commercial industrial sectors. With excellent polymeric medicinal properties and ease of production, microbial levan appear as a valuable and versatile biopolymer of the future. The present article summarizes and discusses the most essential properties of bioactive microbial levan and recent developments in its production, characterization and the emerging applications in health and industry.


Subject(s)
Bacteria/chemistry , Fructans/analysis , Fructans/biosynthesis , Fructans/economics , Molecular Weight , Plants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...