Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 278: 126541, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018760

ABSTRACT

A polyethyleneimine capped silver nanoclusters (PEI-AgNCs) based turn-off-on fluorescence sensor has been developed to determine glutathione (GSH) effectively. The fluorescence intensity of silver nanoclusters (AgNCs) has been quenched by Cu(II) and recovered by adding GSH. The quenching of fluorescence intensity of PEI-AgNCs by Cu(II) and recovery of the emission intensity of PEI-AgNCs after the addition of GSH is supposed to be ground state adduct formation. Due to the greater affinity of Cu(II) towards GSH compared to that to PEI-AgNCs, the defragmentation of PEI-AgNCs-Cu(II) adduct occurs after the addition of GSH to the solution, resulting in the recovery of emission intensity of PEI-AgNCs. Characterisation studies of the probe have been done using FT-IR spectroscopy, XPS analysis, XRD analysis, UV-visible and Fluorescence spectrophotometry, EDX spectroscopy and TEM analysis. Different experimental parameters were optimised. Under optimised analytical conditions, the sensor showed a wide linear range for the quantification of GSH from 1.00 × 10-4 M to 3.00 × 10-6 M with a detection limit (LOD) of 8.00 × 10-7 M. Selectivity and interference studies were done in the presence of different structurally similar and coexisting species of GSH in blood. The practical utility of the proposed sensor has been validated in artificial blood serum.

2.
Talanta ; 277: 126326, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38820825

ABSTRACT

This article describes the development of a facile and efficient fluorescence sensor for the determination of glutathione (GSH). Presence of the antioxidant glutathione in blood serum is considered as a biomarker for catastrophe like colorectal cancer. Silver nanoclusters with strong fluorescence and good water solubility synthesized from relatively cheaper precursors are one of the species very much explored in fluorescence sensors and bioimaging. Here, Chicken egg derived-lysozyme functionalized silver nanoclusters (Lyz AgNCs) with red fluorescence emission has been synthesized and developed to a turn-off fluorescence sensor for GSH through which colorimetric determination is also possible. Due to the ground state 'Ag-S' interaction between Lyz AgNCs and GSH, the determination of the analyte is possible from 1.00 × 10-5 M to 1.00 × 10-6 M via fluorimetric and from 9.00 × 10-6 to 8.00 × 10-7 M via spectrophotometric techniques with a limit of detection 2.86 × 10-7 M and 4.76 × 10-7 M, respectively. Selectivity of the sensor has been studied and applicability of the sensor in artificial blood serum samples has been demonstrated.


Subject(s)
Glutathione , Metal Nanoparticles , Muramidase , Silver , Glutathione/blood , Glutathione/chemistry , Glutathione/analysis , Silver/chemistry , Muramidase/blood , Muramidase/analysis , Muramidase/chemistry , Metal Nanoparticles/chemistry , Animals , Chickens , Limit of Detection , Humans , Spectrometry, Fluorescence/methods
3.
Environ Sci Pollut Res Int ; 23(24): 24970-24982, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27672046

ABSTRACT

Nanopesticides such as nanopermethrin can serve as an alternative to conventional pesticides causing eco-toxicity. The nanoformulation of this pyrethroid pesticide was carried out by solvent evaporation of pesticide-loaded microemulsion. The Z average for the nanopermethrin dispersion in paddy field water was found to be 169.2 ± 0.75 nm with a polydispersity index of 0.371 that exhibits uniform dispersion. Further, the nanopermethrin (NP) dispersion exhibited an effective stability in the paddy field water for a duration of 48 h with a Z average of 177.3 ± 1.2 nm and a zeta potential of -30.7 ± 0.9 mV. The LC50 of the nanopermethrin against Culex tritaeniorhynchus in the field condition was found to be 0.051 µg/mL. In addition to the stability assessment, the biosafety of the nanopermethrin was commenced on the beneficial bacterial isolate Enterobacter ludwigii (VITSPR1) considered as plant growth-promoting rhizobacteria. The toxic effect of nanopesticide was compared to its bulk counterpart, i.e. bulk permethrin (BP) at a concentration of 100 µg/mL, and the nanopesticide was found to be potentially safe. The results of biomarker enzymatic assays (lipid peroxidase, glutathione reductase, lactate dehydrogenase) displayed insignificant (p < 0.05) toxicity of NP towards the bacterial cells compared to BP. The live-dead cell staining and SEM analysis illustrated negligible toxicity of NP towards the bacteria. The non-toxic behaviour of the NP towards the non-target species was studied which displayed the eco-safe property of NP.


Subject(s)
Enterobacter/drug effects , Nanostructures/chemistry , Oryza/microbiology , Permethrin/pharmacology , Pesticides/pharmacology , Rhizome/microbiology , Animals , Culex/growth & development , Enterobacter/enzymology , Enterobacter/growth & development , Fresh Water/chemistry , Lethal Dose 50 , Lipid Peroxidation/drug effects , Oryza/growth & development , Oxidative Stress/drug effects , Particle Size , Permethrin/chemistry , Permethrin/toxicity , Pesticides/chemistry , Pesticides/toxicity , Rhizome/growth & development , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...