Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37425814

ABSTRACT

Interoception broadly refers to awareness of one's internal milieu. Vagal sensory afferents monitor the internal milieu and maintain homeostasis by engaging brain circuits that alter physiology and behavior. While the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferents and corresponding brain circuits that shape perception of the viscera are largely unknown. Here, we use mice to parse neural circuits subserving interoception of the heart and gut. We determine vagal sensory afferents expressing the oxytocin receptor, hereafter referred to as NDGOxtr, send projections to the aortic arch or stomach and duodenum with molecular and structural features indicative of mechanosensation. Chemogenetic excitation of NDGOxtr significantly decreases food and water consumption, and remarkably, produces a torpor-like phenotype characterized by reductions in cardiac output, body temperature, and energy expenditure. Chemogenetic excitation of NDGOxtr also creates patterns of brain activity associated with augmented hypothalamic-pituitary-adrenal axis activity and behavioral indices of vigilance. Recurrent excitation of NDGOxtr suppresses food intake and lowers body mass, indicating that mechanosensation of the heart and gut can exert enduring effects on energy balance. These findings suggest that the sensation of vascular stretch and gastrointestinal distention may have profound effects on whole body metabolism and mental health.

2.
Virus Res ; 318: 198850, 2022 09.
Article in English | MEDLINE | ID: mdl-35750131

ABSTRACT

The human Respiratory Syncytial Virus (hRSV) is the main causative agent of acute respiratory infections (ARI), such as pneumonia and bronchiolitis. One of the factors that lead to success in viral replication is the interaction of the M2-2 protein with the ribosomal complex. This interaction is responsible for the phase change of viral activity, acting as an inhibitor or inducer of viral replication, according to the concentration of mRNA. Based on the importance of M2-2 gene and protein have to viral physiology, we performed here evaluations of genetic diversity, phylogenetic reconstructions, phylodynamics, and selection test. Our results suggested an alternative way of classifying this virus in clades A and B, based on a new phylogenetic marker, the M2-2 gene. Therefore, our study is the first one to investigate the dynamics of the evolutionary diversification process of hRSV from the perspective of the M2-2 viral gene. In our study was also identified that the M2-2 gene is under the effect of purifying selection originated by population genetic bottlenecks. Therefore, the M2-2 gene demonstrated an interesting potential to be applied in evolutionary studies involving hRSV, recovering phylogenetic signals and traits of natural selection under the evolution of this virus.


Subject(s)
Phylogeny , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Genes, Viral , Humans , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human/genetics , Selection, Genetic , Viral Proteins
3.
J Biomol Struct Dyn ; 40(5): 2156-2168, 2022 03.
Article in English | MEDLINE | ID: mdl-33076779

ABSTRACT

The human Respiratory Syncytial Virus (hRSV) is one of the most common causes of acute respiratory diseases such as bronchiolitis and pneumonia in children worldwide. Among the viral proteins, the nucleoprotein (N) stands out for forming the nucleocapsid (NC) that functions as a template for replication and transcription by the viral polymerase complex. The NC/polymerase recognition is mediated by the phosphoprotein (P), which establishes an interaction of its C-terminal residues with a hydrophobic pocket in the N-terminal domain of N (N-NTD). The present study consists of biophysical characterization of N-NTD and investigation of flavonoids binding to this domain using experimental and computational approaches. Saturation transfer difference (STD)-NMR measurements showed that among the investigated flavonoids, only hesperetin (Hst) bound to N-NTD. The binding epitope mapping of Hst suggested that its fused aromatic ring is buried in the protein binding site. STD-NMR and fluorescence anisotropy experiments showed that Hst competes with P protein C-terminal dipeptides for the hRSV nucleoprotein/phosphoprotein (N/P) interaction site in N-NTD, indicating that Hst binds to the hydrophobic pocket in this domain. Computational simulations of molecular docking and dynamics corroborated with experimental results, presenting that Hst established a stable interaction with the N/P binding site. The outcomes presented herein shed light on literature reports that described a significant antireplicative activity of Hst against hRSV, revealing molecular details that can provide the development of a new strategy against this virus.


Subject(s)
Respiratory Syncytial Virus, Human , Binding Sites , Child , Hesperidin , Humans , Molecular Docking Simulation , Nucleoproteins/chemistry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Binding , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/metabolism
4.
Int J Mol Sci ; 21(6)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213871

ABSTRACT

The human Respiratory Syncytial Virus (hRSV) is the most frequent agent of respiratory infections in infants and children with no currently approved vaccine. The M2-1 protein is an important transcriptional antitermination factor and a potential target for viral replication inhibitor development. Hesperetin (HST) and hesperidin (HSD) are flavonoids from the flavanone group, naturally found in citrus and have, as one of their properties, antiviral activity. The present study reports on the interactions between hRSV M2-1 and these flavanones using experimental techniques in association with computational tools. STD-NMR results showed that HST and HSD bind to M2-1 by positioning their aromatic rings into the target protein binding site. Fluorescence quenching measurements revealed that HST had an interaction affinity greater than HSD towards M2-1. The thermodynamic analysis suggested that hydrogen bonds and van der Waals interactions are important for the molecular stabilization of the complexes. Computational simulations corroborated with the experimental results and indicated that the possible interaction region for the flavonoids is the AMP-binding site in M2-1. Therefore, these results point that HST and HSD bind stably to a critical region in M2-1, which is vital for its biological function, and thus might play a possible role antiviral against hRSV.


Subject(s)
Antiviral Agents/pharmacology , Hesperidin/pharmacology , Molecular Docking Simulation , Viral Proteins/chemistry , Antiviral Agents/chemistry , Binding Sites , Hesperidin/chemistry , Protein Binding , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...