Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 71(4): 563-7, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16249877

ABSTRACT

The effects of the application of nine pesticides used commonly in agriculture (aldrin, lindane, dimetoate, methylparathion, methidation, atrazine, simazine, captan and diflubenzuron) on growth, CO2 production, denitrifying activity [as nitrous oxide (N2O) released] and nitrite accumulation in the culture medium by Xanthobacter autotrophicus strain CECT 7064 (Spanish Type Culture Collection) (a micro-organism isolated from a submerged fixed-film) were studied. The herbicide atrazine and the insecticide dimetoate totally inhibited growth and biological activity of X. autotrophicus at 10 mg l(-1), while the rest of the tested pesticides delayed the growth of strain CECT 7064 but did not drastically affect the bacterial growth after 96 h of culture. The denitrifying activity of X. autotrophicus was negatively affected by the pesticides application with the exception of fungicide captan. The release of N2O was strongly inhibited by several pesticides (aldrin, lindane, methylparathion, methidation and diflubenzuron), while dimetoate, atrazine and simazine inhibited totally the denitrifying activity of the strain. The effects of the pesticides on denitrifying submerged fixed-film reactor are discussed.


Subject(s)
Nitrous Oxide/metabolism , Pesticides/pharmacology , Water Pollutants, Chemical/metabolism , Xanthobacter/drug effects , Xanthobacter/growth & development , Carbon Dioxide/metabolism , Xanthobacter/metabolism
2.
Appl Microbiol Biotechnol ; 68(5): 680-5, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15735955

ABSTRACT

Xanthobacter autotrophicus strains with the ability to reduce nitrate and nitrite to either nitrous oxide or molecular nitrogen were isolated from submerged fixed-film reactors. Isolated strains were Gram-negative rods able to grow on methanol, ethanol and sucrose. The yellow cellular pigmentation, pleomorphic appearance, and the presence of poly-beta-hydroxybutyrate granules suggest that the organisms might belong to the genus Xanthobacter. Comparison of 16S rDNA gene sequences demonstrated the affiliation of the strains to X. autotrophicus species. The results show that X. autotrophicus may play a role in inorganic nitrogen removal from a denitrifying submerged filter used for the treatment of contaminated groundwater. To our knowledge, no data on denitrifying activity in X. autotrophicus strains have been reported previously.


Subject(s)
Nitrates/metabolism , Xanthobacter/metabolism , Biofilms , Bioreactors , Culture Media , Equipment Design , Water Purification/methods , Xanthobacter/enzymology , Xanthobacter/growth & development
3.
Environ Toxicol Chem ; 22(9): 1993-7, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12959522

ABSTRACT

The effects of the application of eight pesticides (aldrin, lindane, dimetoate, methylparathion, methidation, atrazine, simazine, and captan) on growth, respiratory activity (as CO2 production), denitrifying activity (as N2O released), and nitrite accumulation in the culture medium by Paracoccus denitrificans strain ATCC 19367 were studied. The fungicide captan totally inhibited growth and biological activity of P. denitrificans, while the rest of the tested pesticides delayed the growth and CO2 release of P. denitrificans but did not drastically affect the bacterial growth or respiratory capacity after 96 h of culture. The denitrifying activity of P. denitrificans ATCC 19367 (as N2O released) was negatively affected by all tested pesticides. The release of N2O was strongly inhibited by several organochlorinated and organophosphorated insecticides (aldrin, lindane, dimetoate, and methidation), which led to high accumulation of nitrite in the surrounding medium. Atrazine decreased N2O release after 48 h of culture because of negative effects on growth, and methylparathion and simazine delayed the onset of N2O release by P. denitrificans. These three pesticides reduced the accumulation of NO2- compared to unamended control cultures.


Subject(s)
Nitrates/pharmacokinetics , Nitrous Oxide/pharmacokinetics , Paracoccus denitrificans/growth & development , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Carbon Dioxide/analysis , Paracoccus denitrificans/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...