Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Carbohydr Polym ; 337: 122170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710559

ABSTRACT

To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked semi-interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on tG. The porosity and swelling capacity decreased with increasing tG, while the stiffness and electrical conductance retention capacity increased with tG. The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.

2.
Environ Pollut ; 347: 123725, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38467369

ABSTRACT

Methylmercury (MeHg) is one of the most worrisome pollutants in marine systems. MeHg detoxification is mediated by merB and merA genes, responsible for the demethylation of MeHg and the reduction of inorganic mercury, respectively. Little is known about the biological capacity to detoxify this compound in marine environments, and even less the bacterial transcriptional changes during MeHg detoxification. This study provides the genomic and transcriptomic characterization of the deep ocean bacteria Alteromonas mediterranea ISS312 with capacity for MeHg degradation. Its genome sequence revealed four mer operons containing three merA gene and two merB gene copies, that could be horizontally transferred among distant related genomes by mobile genetic elements. The transcriptomic profiling in the presence of 5 µM MeHg showed that merA and merB genes are within the most expressed genes, although not all mer genes were equally transcribed. Besides, we aimed to identify functional orthologous genes that displayed expression profiles highly similar or identical to those genes within the mer operons, which could indicate they are under the same regulatory controls. We found contrasting expression profiles for each mer operon that were positively correlated with a wide array of functions mostly related to amino acid metabolism, but also to flagellar assembly or two component systems. Also, this study highlights that all merAB genes of the four operons were globally distributed across oceans layers with higher transcriptional activity in the mesopelagic deeper waters. Our study provides new insights about the transcriptional patterns related to the capacity of marine bacteria to detoxify MeHg, with important implications for the understanding of this process in marine ecosystems.


Subject(s)
Alteromonas , Mercury , Methylmercury Compounds , Methylmercury Compounds/metabolism , Ecosystem , Mercury/metabolism , Bacteria/metabolism , Gene Expression Profiling , Genomics
3.
J Hazard Mater ; 467: 133685, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335604

ABSTRACT

Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance. Specific growth rates and percentage of mercury removal were measured in batch cultures for a selection of isolates. A culture affiliated with Pseudomonas putida (MERCC_1942), which contained a mer operon as well as other genes related to metal resistances, was selected as the best candidate for mercury elimination. In order to optimize mercury detoxification conditions for strain MERCC_1942 in continuous culture, three different dilution rates were tested in bioreactors until the cultures achieved steady state, and they were subsequently exposed to a mercury spike; after 24 h, strain MERCC_1942 removed up to 76% of the total mercury. Moreover, when adapted to high growth rates in bioreactors, this strain exhibited the highest specific mercury detoxification rates. Finally, an immobilization protocol using the sol-gel technology was optimized. These results highlight that some sediment bacteria show capacity to detoxify mercury and could be used for bioremediation applications.


Subject(s)
Environmental Pollutants , Mercury , Mercury/toxicity , Mercury/analysis , Bacteria/genetics , Bioreactors
4.
J Hazard Mater ; 465: 133120, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38101011

ABSTRACT

Marine sediments impacted by urban and industrial pollutants are typically exposed to reducing conditions and represent major reservoirs of toxic mercury species. Mercury methylation mediated by anaerobic microorganisms is favored under such conditions, yet little is known about potential microbial mechanisms for mercury detoxification. We used culture-independent (metagenomics, metabarcoding) and culture-dependent approaches in anoxic marine sediments to identify microbial indicators of mercury pollution and analyze the distribution of genes involved in mercury reduction (merA) and demethylation (merB). While none of the isolates featured merB genes, 52 isolates, predominantly affiliated with Gammaproteobacteria, were merA positive. In contrast, merA genes detected in metagenomes were assigned to different phyla, including Desulfobacterota, Actinomycetota, Gemmatimonadota, Nitrospirota, and Pseudomonadota. This indicates a widespread capacity for mercury reduction in anoxic sediment microbiomes. Notably, merA genes were predominately identified in Desulfobacterota, a phylum previously associated only with mercury methylation. Marker genes involved in the latter process (hgcAB) were also mainly assigned to Desulfobacterota, implying a potential central and multifaceted role of this phylum in the mercury cycle. Network analysis revealed that Desulfobacterota were associated with anaerobic fermenters, methanogens and sulfur-oxidizers, indicating potential interactions between key players of the carbon, sulfur and mercury cycling in anoxic marine sediments.


Subject(s)
Mercury , Microbiota , Mercury/analysis , Geologic Sediments/microbiology , Bacteria/genetics , Sulfur
5.
ISME Commun ; 3(1): 92, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660234

ABSTRACT

Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.

6.
Sci Adv ; 9(36): eadh0140, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37672589

ABSTRACT

The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.


Subject(s)
Nucleoside-Diphosphate Kinase , Animals , Mice , Nucleoside-Diphosphate Kinase/genetics , Diet, High-Fat/adverse effects , Epigenesis, Genetic , Histones , Liver , Fatty Acids , Mice, Knockout
7.
Microbiol Spectr ; : e0089023, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747249

ABSTRACT

Isolation of microorganisms is a useful approach to gathering knowledge about their genomic properties, physiology, and ecology, in addition to allowing the characterization of novel taxa. We performed an extensive isolation effort on samples from seawater manipulation experiments that were carried out during the four astronomical seasons in a coastal site of the northwest Mediterranean to evaluate the impact of grazing, viral mortality, resource competition reduction, and light presence/absence on bacterioplankton growth. Isolates were retrieved using two growth media, and their full 16S rRNA gene was sequenced to assess their identity and calculate their culturability across seasons and experimental conditions. A total of 1,643 isolates were obtained, mainly affiliated to the classes Gammaproteobacteria (44%), Alphaproteobacteria (26%), and Bacteroidia (17%). Isolates pertaining to class Gammaproteobacteria were the most abundant in all experiments, while Bacteroidia were preferentially enriched in the treatments with reduced grazing. Sixty-one isolates had a similarity below 97% to cultured taxa and are thus putatively novel. Comparison of isolate sequences with 16S rRNA gene amplicon sequences from the same samples showed that the percentage of reads corresponding to isolates was 21.4% within the whole data set, with dramatic increases in the summer virus-reduced (71%) and diluted (47%) treatments. In fact, we were able to isolate the top 10 abundant taxa in several experiments and from the whole data set. We also show that top-down and bottom-up controls differentially affect taxa in terms of culturability. Our results indicate that culturing marine bacteria using agar plates can be successful in certain ecological situations. IMPORTANCE Bottom-up and top-down controls greatly influence marine microbial community composition and dynamics, which in turn have effects on their culturability. We isolated a high amount of heterotrophic bacterial strains from experiments where seawater environmental conditions had been manipulated and found that decreasing grazing and viral pressure as well as rising nutrient availability are key factors increasing the success in culturing marine bacteria. Our data hint at factors influencing culturability and underpin bacterial cultures as a powerful way to discover new taxa.

8.
Acta Crystallogr C Struct Chem ; 79(Pt 7): 277-282, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37345638

ABSTRACT

Self-assembling dipeptides have emerged in the last two decades as promising building blocks for the development of novel biomaterials. Among the various classes of dipeptides, aromatic dipeptides and especially diphenylalanine (Phe-Phe), which forms hexagonal nanotubes, have been the most extensively studied. However, aliphatic peptides or mixed aromatic-aliphatic dipeptides seem just as promising, exhibiting various structures ranging from amyloid fibrils to microtubes. Herein we report the single-crystal structure of an aliphatic dipeptide, alanine-isoleucine (Ala-Ile), C17H24N2O5, protected with a benzyloxycarbonyl (Z) group at the N-terminus. The protected dipeptide crystallizes in the orthorhombic space group P212121 and forms hollow microtubes with orthorhombic symmetry upon evaporation on glass surfaces, as shown by field emission scanning electron microscopy (FESEM). These findings provide an increased understanding of the correlation between the single-crystal structure of the peptide building block and its self-assembly mechanism, and expand the library of available building blocks for microtechnological applications.


Subject(s)
Alanine , Isoleucine , Alanine/chemistry , Hydrogen Bonding , Crystallography, X-Ray , Dipeptides/chemistry
9.
Rev. Rol enferm ; 46(3): 46-53, mar. 2023. tab
Article in Spanish | IBECS | ID: ibc-217421

ABSTRACT

Objetivo: describir el índice de masa corporal, el nivel de actividad física, la calidad del sueño y la relación entre ellos, en las enfermeras/os colegiadas en la provincia de Ávila. Método: estudio analítico descriptivo transversal. Se utilizó un cuestionario en el que se recogían datos sociodemográficos, el índice de masa corporal, cuestionario internacional de actividad física (IPAQ) y cuestionario de índice de calidad del sueño de Pittsburg (PSQI), de aquellas enfermeras/os colegiadas en la provincia de Ávila que participaron voluntariamente en el estudio. Para el análisis estadístico se utilizó el paquete estadístico SPSS v 26. Resultados: el 32,18% presentó algún tipo de exceso de peso, observándose una relación directa con la edad (p=0,022). El 8,47% de la muestra presentó un nivel bajo de actividad física. Se observó relación entre la edad y la actividad física intensa (p=0,042), siendo los hombres los que dedicaron mayor frecuencia y duración (p=0,040 y 0,034 respectivamente). El 55,08% de los participantes fueron “malos dormidores”. Se observó una relación significativa entre la edad y la necesidad del uso del wc y sentir demasiado calor (p=0,025 y 0,004 respectivamente), y el uso de medicación (p=0,002). Conclusiones: los niveles de índice de masa corporal, la práctica de actividad física y la calidad del sueño están estrechamente relacionados, ya que las enfermeras/os que estaban en normopeso fueron quienes presentaron un nivel alto de actividad física, y mejor calidad del sueño. (AU)


The aim of this study is to describe Body Mass Index, phisical activity level and the sleep quality of nursing staff from Ávila, as well as analyze the relationship of them. Method: an analytical cross-sectional descriptive study was conducted collecting socio-demographic as well as Body Mass Index (BMI), Intenational Physical Activity Questionnaire (IPAQ) and Pittsburg Sleep Quality Index (PSQI) of Avila`s nurses who voluntarity participate. PSPP was used for statistic analyse. Results: 32,18% were somehow, overweighted. A lineal relationship was found between BMI and age (p=0,022). 8,47% registered a low phisical activity level. There was a líneal relationship between age and intense phisical activity (p=0,042) and gender, where men spent more frecuency and duration to phisical activity (p=0,040 and 0,034 respectively). 55,08% of the sample were classified as “bad sleepers”. A significant association was found between age and the use of wc and feeling too hot (p= 0,025 and 0,004 respectively), and the need of sleeping pills (p=0,002). Conclusion: althoug the research results are not conclusive, it seems BMI levels, PA practice and sleep queality are closely associated, our Avila`s nursing staff sample proper weighted, practiced high PA level and also reported better sleep quality. (AU)


Subject(s)
Humans , Obesity , Motor Activity , Nursing , Body Mass Index , Sleep , Epidemiology, Descriptive , Cross-Sectional Studies , Overweight , Spain
10.
Front Oncol ; 12: 965455, 2022.
Article in English | MEDLINE | ID: mdl-36313676

ABSTRACT

The mitotic kinesin Eg5 has emerged as a potential anti-mitotic target for the purposes of cancer chemotherapy. Whether clinical resistance to these inhibitors can arise is unclear. We exploited HCT116 cancer cell line to select resistant clones to S-trityl-L-cysteine (STLC), an extensively studied Eg5 loop-L5 binding inhibitor. The STLC resistant clones differed in their resistance to other loop-L5 binding inhibitors but remained sensitive to the ATP class of competitive Eg5 specific inhibitors. Eg5 is still necessary for bipolar spindle formation in the resistant clones since the cells were sensitive to RNAi mediated depletion of Eg5. One clone expressing Eg5(T107N), a dominant point mutation in the P-loop of the ATP binding domain of the motor, appeared to be not only resistant but also dependent on the presence of STLC. Eg5(T107N) expression was associated also with resistance to the clinical relevant loop-L5 Eg5 inhibitors, Arry-520 and ispinesib. Ectopic expression of the Eg5(T107N) mutant in the absence of STLC was associated with strong non-exchangeable binding to microtubules causing them to bundle. Biochemical assays showed that in contrast to the wild type Eg5-STLC complex, the ATP binding site of the Eg5(T107N) is accessible for nucleotide exchange only when the inhibitor is present. We predict that resistance can be overcome by inhibitors that bind to other than the Eg5 loop-L5 binding site having different chemical scaffolds, and that allostery-dependent resistance to Eg5 inhibitors may also occur in cells and may have positive implications in chemotherapy since once diagnosed may be beneficial following cessation of the chemotherapeutic regimen.

11.
Article in English | MEDLINE | ID: mdl-35997078

ABSTRACT

Two strains isolated from a sample of activated sludge that was obtained from a seawater-based wastewater treatment plant on the southeastern Mediterranean coast of Spain have been characterized to achieve their taxonomic classification, since preliminary data suggested they could represent novel taxa. Given the uniqueness of this habitat, as this sort of plants are rare in the world and this one used seawater to process an influent containing intermediate products from amoxicillin synthesis, we also explored their ecology and the annotations of their genomic sequences. Analysis of their 16S rRNA gene sequences revealed that one of them, which was orange-pigmented, was distantly related to Vicingus serpentipes (family Vicingaceae) and to other representatives of neighbouring families in the order Flavobacteriales (class Flavobacteriia) by 88-89 % similarities; while the other strain, which was yellow-pigmented, was a putative new species of Lysobacter (family Xanthomonadaceae, order Xanthomonadales, class Gammaproteobacteria) with Lysobacter arseniciresistens as closest relative (97.3 % 16S rRNA sequence similarity to its type strain). Following a polyphasic taxonomic approach, including a genome-based phylogenetic analysis and a thorough phenotypic characterization, we propose the following novel taxa: Parvicella tangerina gen. nov., sp. nov. (whose type strain is AS29M-1T=CECT 30217T=LMG 32344T), Parvicellaceae fam. nov. (whose type genus is Parvicella), and Lysobacter luteus sp. nov. (whose type strain is AS29MT=CECT 30171T=LMG 32343T).


Subject(s)
Flavobacteriaceae , Gammaproteobacteria , Lysobacter , Water Purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Sewage
12.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: mdl-35995566

ABSTRACT

HIV-1 Rev mediates the nuclear export of intron-containing viral RNA transcripts and is essential for viral replication. Rev is imported into the nucleus by the host protein importin ß (Impß), but how Rev associates with Impß is poorly understood. Here, we report biochemical, mutational, and biophysical studies of the Impß/Rev complex. We show that Impß binds two Rev monomers through independent binding sites, in contrast to the 1:1 binding stoichiometry observed for most Impß cargos. Peptide scanning data and charge-reversal mutations identify the N-terminal tip of Rev helix α2 within Rev's arginine-rich motif (ARM) as a primary Impß-binding epitope. Cross-linking mass spectrometry and compensatory mutagenesis data combined with molecular docking simulations suggest a structural model in which one Rev monomer binds to the C-terminal half of Impß with Rev helix α2 roughly parallel to the HEAT-repeat superhelical axis, whereas the other monomer binds to the N-terminal half. These findings shed light on the molecular basis of Rev recognition by Impß and highlight an atypical binding behavior that distinguishes Rev from canonical cellular Impß cargos.


Subject(s)
HIV-1 , beta Karyopherins , HIV-1/metabolism , Models, Structural , Molecular Docking Simulation , RNA, Viral/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism
13.
Environ Sci Technol ; 56(6): 3452-3461, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35245029

ABSTRACT

Microbial reduction of inorganic divalent mercury (Hg2+) and methylmercury (MeHg) demethylation is performed by the mer operon, specifically by merA and merB genes, respectively, but little is known about the mercury tolerance capacity of marine microorganisms and its prevalence in the ocean. Here, combining culture-dependent analyses with metagenomic and metatranscriptomic data, we show that marine bacteria that encode mer genes are widespread and active in the global ocean. We explored the distribution of these genes in 290 marine heterotrophic bacteria (Alteromonas and Marinobacter spp.) isolated from different oceanographic regions and depths, and assessed their tolerance to diverse concentrations of Hg2+ and MeHg. In particular, the Alteromonas sp. ISS312 strain presented the highest tolerance capacity and a degradation efficiency for MeHg of 98.2% in 24 h. Fragment recruitment analyses of Alteromonas sp. genomes (ISS312 strain and its associated reconstructed metagenome assembled genome MAG-0289) against microbial bathypelagic metagenomes confirm their prevalence in the deep ocean. Moreover, we retrieved 54 merA and 6 merB genes variants related to the Alteromonas sp. ISS312 strain from global metagenomes and metatranscriptomes from Tara Oceans. Our findings highlight the biological reductive MeHg degradation as a relevant pathway of the ocean Hg biogeochemical cycle.


Subject(s)
Mercury , Methylmercury Compounds , Bacteria/genetics , Bacteria/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Oceans and Seas , Prevalence
14.
Life Sci Alliance ; 4(12)2021 12.
Article in English | MEDLINE | ID: mdl-34580178

ABSTRACT

Taking advantage of the evolutionary conserved nature of ATAD2, we report here a series of parallel functional studies in human, mouse, and Schizosaccharomyces pombe to investigate ATAD2's conserved functions. In S. pombe, the deletion of ATAD2 ortholog, abo1, leads to a dramatic decrease in cell growth, with the appearance of suppressor clones recovering normal growth. The identification of the corresponding suppressor mutations revealed a strong genetic interaction between Abo1 and the histone chaperone HIRA. In human cancer cell lines and in mouse embryonic stem cells, we observed that the KO of ATAD2 leads to an accumulation of HIRA. A ChIP-seq mapping of nucleosome-bound HIRA and FACT in Atad2 KO mouse ES cells demonstrated that both chaperones are trapped on nucleosomes at the transcription start sites of active genes, resulting in the abnormal presence of a chaperone-bound nucleosome on the TSS-associated nucleosome-free regions. Overall, these data highlight an important layer of regulation of chromatin dynamics ensuring the turnover of histone-bound chaperones.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Histone Chaperones/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Gene Deletion , Gene Knockout Techniques , Genotype , HeLa Cells , Hep G2 Cells , Humans , Mice , Microorganisms, Genetically-Modified , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Transfection
15.
Biochem Pharmacol ; 184: 114364, 2021 02.
Article in English | MEDLINE | ID: mdl-33310050

ABSTRACT

Eg5, the product of Kif11 gene, also known as kinesin spindle protein, is a motor protein involved in the proper establishment of a bipolar mitotic spindle. Eg5 is one of the 45 different kinesins coded in the human genome of the kinesin motor protein superfamily. Over the last three decades Eg5 has attracted great interest as a promising new mitotic target. The identification of monastrol as specific inhibitor of the ATPase activity of the motor domain of Eg5 inhibiting the Eg5 microtubule motility in vitro and in cellulo sparked an intense interest in academia and industry to pursue the identification of novel small molecules that target Eg5 in order to be used in cancer chemotherapy based on the anti-mitotic strategy. Several Eg5 inhibitors entered clinical trials. Currently the field is faced with the problem that most of the inhibitors tested exhibited only limited efficacy. However, one Eg5 inhibitor, Arry-520 (clinical name filanesib), has demonstrated clinical efficacy in patients with multiple myeloma and is scheduled to enter phase III clinical trials. At the same time, new trends in Eg5 inhibitor research are emerging, including an increased interest in novel inhibitor binding sites and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of Eg5-inhibitor complexes, traces the possible development of resistance to Eg5 inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this active field in drug discovery.


Subject(s)
Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Adenosine Triphosphate/metabolism , Animals , Antimitotic Agents/chemistry , Antimitotic Agents/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Binding Sites , Biological Products/chemistry , Biological Products/pharmacology , Clinical Trials as Topic , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Humans , Kinesins/chemistry , Molecular Targeted Therapy/methods
16.
Sci Rep ; 10(1): 19773, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188261

ABSTRACT

Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.


Subject(s)
Alteromonadaceae/radiation effects , Infrared Rays , Light , Microbiota , Spectrophotometry, Infrared
17.
BMC Microbiol ; 20(1): 207, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32660423

ABSTRACT

BACKGROUND: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. RESULTS: The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. CONCLUSIONS: Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.


Subject(s)
Bacteria/classification , Bacteria/growth & development , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Arctic Regions , Atlantic Ocean , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Heterotrophic Processes , Indian Ocean , Mediterranean Sea , Pacific Ocean , Phylogeny , Phylogeography , Water Microbiology
18.
Int J Syst Evol Microbiol ; 70(7): 4329-4338, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32589567

ABSTRACT

Strain ISS653T, isolated from Atlantic seawater, is a yellow pigmented, non-motile, Gram-reaction-negative rod-shaped bacterium, strictly aerobic and chemoorganotrophic, slightly halophilic (1-15 % NaCl) and mesophilic (4-37 °C), oxidase- and catalase-positive and proteolytic. Its major cellular fatty acids are iso-C15 : 0, iso-C15 : 0 2-OH, and iso-C17 : 0 3-OH; the major identified phospholipid is phosphatidylethanolamine and the major respiratory quinone is MK6. Genome size is 4.28 Mbp and DNA G+C content is 34.9 mol%. 16S rRNA gene sequence similarity places the strain among members of the family Flavobacteriaceae, with the type strains of Mesonia phycicola (93.2 %), Salegentibacter mishustinae (93.1 %) and Mesonia mobilis (92.9 %) as closest relatives. Average amino acid identity (AAI) and average nucleotide identity (ANI) indices show highest values with M. mobilis (81 % AAI; 78.9 % ANI), M. phycicola (76 % AAI; 76.3 % ANI), Mesonia maritima (72 % AAI, 74.9 % ANI), Mesonia hippocampi (64 % AAI, 70.8 % ANI) and Mesonia algae (68 % AAI; 72.2 % ANI). Phylogenomic analysis using the Up-to-date-Bacterial Core Gene set (UBCG) merges strain ISS653T in a clade with species of the genus Mesonia. We conclude that strain ISS653T represents a novel species of the genus Mesonia for which we propose the name Mesonia oceanica sp. nov., and strain ISS653T (=CECT 9532T=LMG 31236T) as the type strain. A second strain of the species, ISS1889 (=CECT 30008) was isolated from Pacific Ocean seawater. Data obtained throughout the Tara oceans expedition indicate that the species is more abundant in the mesopelagic dark ocean than in the photic layer and it is more frequent in the South Pacific, Indian and North Atlantic oceans.


Subject(s)
Flavobacteriaceae/classification , Phylogeny , Seawater/microbiology , Atlantic Ocean , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/isolation & purification , Pacific Ocean , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives
19.
Nat Commun ; 11(1): 985, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066719

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
FEBS Lett ; 594(1): 175-188, 2020 01.
Article in English | MEDLINE | ID: mdl-31365120

ABSTRACT

UBR5 is an E3 ubiquitin ligase involved in distinct processes such as transcriptional regulation and development. UBR5 is highly upregulated in embryonic stem cells (ESCs), whereas its expression decreases with differentiation, suggesting a role for UBR5 in ESC function. However, little is known about how UBR5 regulates ESC identity. Here, we define the protein interactome of UBR5 in ESCs and find interactions with distinct components of the H/ACA ribonucleoprotein complex, which is required for proper maturation of ribosomal RNA (rRNA). Notably, loss of UBR5 induces an abnormal accumulation of rRNA processing intermediates, resulting in diminished ribosomal levels. Consequently, lack of UBR5 triggers an increase in p53 levels and a concomitant decrease in cellular proliferation rates. Thus, our results indicate a link between UBR5 and rRNA maturation.


Subject(s)
RNA, Ribosomal/metabolism , Ribonucleoproteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cells, Cultured , Embryonic Stem Cells/metabolism , HEK293 Cells , Humans , Mice , RNA Processing, Post-Transcriptional , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...