Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 110: 103919, 2022 12.
Article in English | MEDLINE | ID: mdl-36564142

ABSTRACT

This paper is aimed at identifying by means of micro-CT the microstructural differences between normal and degenerative mitral marginal chordae tendineae. The control group is composed of 21 normal chords excised from 14 normal mitral valves from heart transplant recipients. The experimental group comprises 22 degenerative fibroelastic chords obtained at surgery from 11 pathological valves after mitral repair or replacement. In the control group the superficial endothelial cells and spongiosa layer remained intact, covering the wavy core collagen. In contrast, in the experimental group the collagen fibers were arranged as straightened thick bundles in a parallel configuration. 100 cross-sections were examined by micro-CT from each chord. Each image was randomized through the K-means machine learning algorithm and then, the global and local Shannon entropies were obtained. The optimum number of clusters, K, was estimated to maximize the differences between normal and degenerative chords in global and local Shannon entropy; the p-value after a nested ANOVA test was chosen as the parameter to be minimized. Optimum results were obtained with global Shannon entropy and 2≤K≤7, providing p < 0.01; for K=3, p = 2.86·10-3. These findings open the door to novel perioperative diagnostic methods in order to avoid or reduce postoperative mitral valve regurgitation recurrences.


Subject(s)
Endothelial Cells , Mitral Valve Insufficiency , Humans , Chordae Tendineae/pathology , Collagen , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/surgery , X-Ray Microtomography
2.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361534

ABSTRACT

Hypoxia may be associated with alterations in bone remodeling, but the published results are contradictory. The aim of this study was to characterize the bone morphometry changes subject to hypoxia for a better understanding of the bone response to hypoxia and its possible clinical consequences on the bone metabolism. This study analyzed the bone morphometry parameters by micro-computed tomography (µCT) in rat and guinea pig normobaric hypoxia models. Adult male and female Wistar rats were exposed to chronic hypoxia for 7 and 15 days. Additionally, adult male guinea pigs were exposed to chronic hypoxia for 15 days. The results showed that rats exposed to chronic constant and intermittent hypoxic conditions had a worse trabecular and cortical bone health than control rats (under a normoxic condition). Rats under chronic constant hypoxia were associated with a more deteriorated cortical tibia thickness, trabecular femur and tibia bone volume over the total volume (BV/TV), tibia trabecular number (Tb.N), and trabecular femur and tibia bone mineral density (BMD). In the case of chronic intermittent hypoxia, rats subjected to intermittent hypoxia had a lower cortical femur tissue mineral density (TMD), lower trabecular tibia BV/TV, and lower trabecular thickness (Tb.Th) of the tibia and lower tibia Tb.N. The results also showed that obese rats under a hypoxic condition had worse values for the femur and tibia BV/TV, tibia trabecular separation (Tb.Sp), femur and tibia Tb.N, and BMD for the femur and tibia than normoweight rats under a hypoxic condition. In conclusion, hypoxia and obesity may modify bone remodeling, and thus bone microarchitecture, and they might lead to reductions in the bone strength and therefore increase the risk of fragility fracture.


Subject(s)
Bone Density , Tibia , Rats , Guinea Pigs , Male , Female , Animals , Bone Density/physiology , X-Ray Microtomography , Rats, Sprague-Dawley , Rats, Wistar , Tibia/diagnostic imaging , Tibia/physiology , Obesity , Models, Animal , Hypoxia
3.
Biomolecules ; 12(5)2022 05 19.
Article in English | MEDLINE | ID: mdl-35625649

ABSTRACT

The purpose of this study was to analyze the regenerative capacity of mesenchymal stem cells (MSCs) in the treatment of fractures. MSCs extracted from patients with osteoporotic hip fractures or hip osteoarthritis undergoing hip replacement surgeries were cultured and injected into mice with femoral fracture. Two experimental models were established, one for the systemic administration of MSCs (n = 29) and another one for local administration (n = 30). Fracture consolidation was assessed by micro-CT and histology. The degree of radiological consolidation and corticalization was better with MSCs from osteoporosis than from osteoarthritis, being significant after systemic administration (p = 0.0302 consolidation; p = 0.0243 corticalization). The histological degree of consolidation was also better with MSCs from osteoporosis than from osteoarthritis. Differences in histological scores after systemic infusion were as follows: Allen, p = 0.0278; Huo, p = 0.3471; and Bone Bridge, p = 0.0935. After local administration at the fracture site, differences in histological scores were as follows: Allen, p = 0.0764; Huo, p = 0.0256; and Bone Bridge, p = 0.0012. As osteoporosis and control groups were similar, those differences depended on an inhibitory influence by MSCs from patients with osteoarthritis. In conclusion, we found an unexpected impairment of consolidation induced by MSCs from patients with osteoarthritis. However, MSCs from patients with osteoporosis compared favorably with cells from patients with osteoarthritis. In other words, based on this study and previous studies, MSCs from patients with osteoporosis do not appear to have worse bone-regenerating capabilities than MSCs from non-osteoporotic individuals of similar age.


Subject(s)
Femoral Fractures , Mesenchymal Stem Cells , Osteoarthritis , Osteoporosis , Osteoporotic Fractures , Animals , Disease Models, Animal , Femoral Fractures/therapy , Fracture Healing , Humans , Mice
4.
Materials (Basel) ; 14(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34640249

ABSTRACT

One of the biggest challenges in facilitating the installation of concrete is the development of fibre-reinforced concrete. Although nowadays fibre reinforced concrete is relatively common, it is still necessary to deepen in the study on its behaviour, especially regarding its fatigue behaviour. This paper proposes a new methodology to analyse the bending fatigue behaviour of notched test specimens. From these tests, it was possible to verify that, despite carrying out the tests with load control, the presence of fibres extends the fatigue life of the concrete after cracking. This effect is of great importance since during the extra lifetime with the cracked concrete, the damage to the concrete will be evident and the corresponding maintenance measures can be carried out. Regarding the analysis of the results, in addition to obtaining a traditional S-N curve, two new criteria have been applied, namely energy and notch growth. From these two new approaches, it was possible to determine critical energy values that can be used as predictive indicators of the collapse of the element. Moreover, from the notch growth analysis, it was possible to determine crack growth rate as a function of the stress conditions for the concrete and the specific geometry. From the comparison among the results obtained from the different tests, a limit cracking index of 0.05 mm can be defined.

5.
J Mech Behav Biomed Mater ; 65: 200-212, 2017 01.
Article in English | MEDLINE | ID: mdl-27591507

ABSTRACT

The influence of the orientation of rat bones on their mechanical response is analyzed in this research. 28 femora obtained from 14 Sprague-Dawley rats were subjected to three-point bending tests, comparing the anteroposterior and posteroanterior orientations. The results show that the whole-bone loading capacity of the femora tested in the posteroanterior orientation clearly exceeds that of the anteroposterior oriented bones. Likewise, the intrinsic (tissue-level) loading capacity of the bones tested in the posteroanterior orientation is manifestly higher than that of the bones tested in the opposite direction. The analysis carried out shows that applying beam theory for symmetric cross-sections leads to underestimating the stress state in the cross-section. In this sense, it is generally recommendable to use the non-symmetric beam theory in order to obtain the normal stresses during bending tests. The geometric, intrinsic and global changes resulting from the orientation of the bones was assessed, finding out that it is the variation in the intrinsic properties which explains the change measured in the whole-bone properties. The experimental scope was increased, including 8 additional femora on which a series of Vickers tests were carried out in the anterior and posterior regions of the cross-section. In all cases the hardness obtained in the anterior region is larger than in the posterior region. This result confirms that the mechanical properties of the bone tissue depend on its position in the cross-section and provides a reliable explanation to understand the response of the bones when subjected to bending tests. These results stress the importance of reporting the orientation of the bones in any scientific paper because, otherwise, it would be impossible to properly assess its impact and relevance.


Subject(s)
Bone and Bones/physiology , Stress, Mechanical , Animals , Biomechanical Phenomena , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...