Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38997210

ABSTRACT

GO/noGO tasks enable assessing decision-making processes and the ability to suppress a specific action according to the context. Here, rats had to discriminate between 2 visual stimuli (GO or noGO) shown on an iPad screen. The execution (for GO) or nonexecution (for noGO) of the selected action (to touch or not the visual display) were reinforced with food. The main goal was to record and to analyze local field potentials collected from cortical and subcortical structures when the visual stimuli were shown on the touch screen and during the subsequent activities. Rats were implanted with recording electrodes in the prelimbic cortex, primary motor cortex, nucleus accumbens septi, basolateral amygdala, dorsolateral and dorsomedial striatum, hippocampal CA1, and mediodorsal thalamic nucleus. Spectral analyses of the collected data demonstrate that the prelimbic cortex was selectively involved in the cognitive and motivational processing of the learning task but not in the execution of reward-directed behaviors. In addition, the other recorded structures presented specific tendencies to be involved in these 2 types of brain activity in response to the presentation of GO or noGO stimuli. Spectral analyses, spectrograms, and coherence between the recorded brain areas indicate their specific involvement in GO vs. noGO tasks.


Subject(s)
Decision Making , Animals , Male , Rats , Decision Making/physiology , Rats, Wistar , Prefrontal Cortex/physiology , Reward , Photic Stimulation/methods
2.
Mol Metab ; 87: 101989, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019115

ABSTRACT

BACKGROUND AND OBJECTIVES: Fibrosis contributes to 45% of deaths in industrialized nations and is characterized by an abnormal accumulation of extracellular matrix (ECM). There are no specific anti-fibrotic treatments for liver fibrosis, and previous unsuccessful attempts at drug development have focused on preventing ECM deposition. Because liver fibrosis is largely acknowledged to be reversible, regulating fibrosis resolution could offer novel therapeutical options. However, little is known about the mechanisms controlling ECM remodeling during resolution. Changes in proteolytic activity are essential for ECM homeostasis and macrophages are an important source of proteases. Herein, in this study we evaluate the role of macrophage-derived cathepsin D (CtsD) during liver fibrosis. METHODS: CtsD expression and associated pathways were characterized in single-cell RNA sequencing and transcriptomic datasets in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD and hepatocyte-CtsD knock-out mice. RESULTS: Analysis of single-cell RNA sequencing datasets demonstrated CtsD was expressed in macrophages and hepatocytes in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD (CtsDΔMyel) and hepatocyte-CtsD knock-out mice. CtsD deletion in macrophages, but not in hepatocytes, resulted in enhanced liver fibrosis. Both inflammatory and matrisome proteomic signatures were enriched in fibrotic CtsDΔMyel livers. Besides, CtsDΔMyel liver macrophages displayed functional, phenotypical and secretomic changes, which resulted in a degradomic phenotypical shift, responsible for the defective proteolytic processing of collagen I in vitro and impaired collagen remodeling during fibrosis resolution in vivo. Finally, CtsD-expressing mononuclear phagocytes of cirrhotic human livers were enriched in lysosomal and ECM degradative signaling pathways. CONCLUSIONS: Our work describes for the first-time CtsD-driven lysosomal activity as a central hub for restorative macrophage function during fibrosis resolution and opens new avenues to explore their degradome landscape to inform drug development.

3.
Blood Cells Mol Dis ; 104: 102761, 2024 01.
Article in English | MEDLINE | ID: mdl-37271682

ABSTRACT

ß-Thalassemia is a genetic form of anemia due to mutations in the ß-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of ß-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.


Subject(s)
beta-Thalassemia , Animals , Humans , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Erythropoiesis/genetics , Iron/metabolism , Globins/genetics , Disease Models, Animal
5.
PeerJ ; 11: e16390, 2023.
Article in English | MEDLINE | ID: mdl-38047025

ABSTRACT

Bacteria from the Pseudomonas syringae complex (comprised of at least 15 recognized species and more than 60 different pathovars of P. syringae sensu stricto) have been cultured from clouds, rain, snow, streams, rivers, and lakes. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as ice+) that catalyzes the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in the U.S. and France, little is known about the genetic diversity and ice nucleation activity of P. syringae in other parts of the world. We investigated the haplotype diversity and ice nucleation activity at -8 °C (ice+) of strains of P. syringae from water samples collected with drones in eight freshwater lakes in Austria. A phylogenetic analysis of citrate synthase (cts) sequences from 271 strains of bacteria isolated from a semi-selective medium for Pseudomonas revealed that 69% (188/271) belonged to the P. syringae complex and represented 32 haplotypes in phylogroups 1, 2, 7, 9, 10, 13, 14 and 15. Strains within the P. syringae complex were identified in all eight lakes, and seven lakes contained ice+ strains. Partial 16S rDNA sequences were analyzed from a total of 492 pure cultures of bacteria isolated from non-selective medium. Nearly half (43.5%; 214/492) were associated with the genus Pseudomonas. Five of the lakes (ALT, GRU, GOS, GOL, and WOR) were all distinguished by high levels of Pseudomanas (p ≤ 0.001). HIN, the highest elevation lake, had the highest percentage of ice+ strains. Our work highlights the potential for uncovering new haplotypes of P. syringae in aquatic habitats, and the use of robotic technologies to sample and characterize microbial life in remote settings.


Subject(s)
Ice , Pseudomonas syringae , Pseudomonas syringae/genetics , Lakes , Phylogeny , Austria , Unmanned Aerial Devices , Water/metabolism , Bacteria
6.
JHEP Rep ; 5(10): 100830, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37701336

ABSTRACT

Background & Aims: : The accumulation of adipose tissue macrophages (ATMs) in obesity has been associated with hepatic injury. However, the contribution of ATMs to hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. Herein, we investigate the relationship between ATMs and liver fibrosis in patients with patients with NAFLD and evaluate the impact of modulation of ATMs over hepatic fibrosis in an experimental non-alcoholic steatohepatitis (NASH) model. Methods: Adipose tissue and liver biopsies from 42 patients with NAFLD with different fibrosis stages were collected. ATMs were characterised by immunohistochemistry and flow cytometry and the correlation between ATMs and liver fibrosis stages was assessed. Selective modulation of the ATM phenotype was achieved by i.p. administration of dextran coupled with dexamethasone in diet-induced obesity and NASH murine models. Chronic administration effects were evaluated by histology and gene expression analysis in adipose tissue and liver samples. In vitro crosstalk between human ATMs and hepatic stellate cells (HSCs) and liver spheroids was performed. Results: Patients with NAFLD presented an increased accumulation of pro-inflammatory ATMs that correlated with hepatic fibrosis. Long-term modulation of ATMs significantly reduced pro-inflammatory phenotype and ameliorated adipose tissue inflammation. Moreover, ATMs modulation was associated with an improvement in steatosis and hepatic inflammation and significantly reduced fibrosis progression in an experimental NASH model. In vitro, the reduction of the pro-inflammatory phenotype of human ATMs with dextran-dexamethasone treatment reduced the secretion of inflammatory chemokines and directly attenuated the pro-fibrogenic response in HSCs and liver spheroids. Conclusions: Pro-inflammatory ATMs increase in parallel with fibrosis degree in patients with NAFLD and their modulation in an experimental NASH model improves liver fibrosis, uncovering the potential of ATMs as a therapeutic target to mitigate liver fibrosis in NAFLD. Impact and implications: We report that human adipose tissue pro-inflammatory macrophages correlate with hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD). Furthermore, the modulation of adipose tissue macrophages (ATMs) by dextran-nanocarrier conjugated with dexamethasone shifts the pro-inflammatory phenotype of ATMs to an anti-inflammatory phenotype in an experimental murine model of non-alcoholic steatohepatitis. This shift ameliorates adipose tissue inflammation, hepatic inflammation, and fibrosis. Our results highlight the relevance of adipose tissue in NAFLD pathophysiology and unveil ATMs as a potential target for NAFLD.

7.
Eur J Endocrinol ; 189(2): 271-280, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37619992

ABSTRACT

OBJECTIVE: Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetically heterogeneous reproductive disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. Approximately half of CHH patients also have decreased or absent sense of smell, that is, Kallmann syndrome (KS). We describe a patient with White-Sutton syndrome (developmental delay and autism spectrum disorder) and KS due to a heterozygous de novo mutation in POGZ (c.2857C>T, p.(Gln953*)), a gene encoding pogo transposable element derived with zinc finger domain, which acts as a transcriptomic regulator of neuronal networks. DESIGN AND METHODS: We modeled the role of POGZ in CHH by generating 2 clonal human pluripotent stem cell lines with CRISPR/Cas9, carrying either the heterozygous patient mutation (H11 line) or a homozygous mutation (c.2803-2906del; p.E935Kfs*7 encoding a truncated POGZ protein; F6del line). RESULTS: During the differentiation to GnRH neurons, neural progenitors derived from F6del line displayed severe proliferation defect, delayed wound-healing capacity, downregulation of intermediate progenitor neuron genes TBR1 and TBR2, and immature neuron markers PAX6 and TUBB3 and gave rise to fewer neurons with shorter neurites and less neurite branch points compared to the WT and H11 lines (P < .005). Both lines, however, could be successfully differentiated to GnRH neurons. CONCLUSIONS: In conclusion, this is the first report on the overlap between White-Sutton syndrome and CHH. POGZ mutations do not hinder GnRH neuron formation but may cause CHH/KS by affecting the size and motility of the anterior neural progenitor pool and neurite outgrowth.


Subject(s)
Autism Spectrum Disorder , Kallmann Syndrome , Humans , Kallmann Syndrome/genetics , Neurons , Gonadotropin-Releasing Hormone , Mutation/genetics
8.
Front Neurosci ; 17: 1204809, 2023.
Article in English | MEDLINE | ID: mdl-37434763

ABSTRACT

To watch a person doing an activity has an impact on the viewer. In fact, the film industry hinges on viewers looking at characters doing all sorts of narrative activities. From previous works, we know that media and non-media professionals perceive differently audiovisuals with cuts. Media professionals present a lower eye-blink rate, a lower activity in frontal and central cortical areas, and a more organized functional brain connectivity when watching audiovisual cuts. Here, we aimed to determine how audiovisuals with no formal interruptions such as cuts were perceived by media and non-media professionals. Moreover, we wondered how motor actions of characters in films would have an impact on the brain activities of the two groups of observers. We presented a narrative with 24 motor actions in a one-shot movie in wide shot with no cuts to 40 participants. We recorded the electroencephalographic (EEG) activity of the participants and analyzed it for the periods corresponding to the 24 motor actions (24 actions × 40 participants = 960 potential trials). In accordance with collected results, we observed differences in the EEG activity of the left primary motor cortex. A spectral analysis of recorded EEG traces indicated the presence of significant differences in the beta band between the two groups after the onset of the motor activities, while no such differences were found in the alpha band. We concluded that media expertise is related with the beta band identified in the EEG activity of the left primary motor cortex and the observation of motor actions in videos.

9.
Sci Data ; 10(1): 458, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443125

ABSTRACT

The COVID-19 pandemic is the first pandemic in the Information Age. It started in Asia and spread rapidly around the world. As a consequence, millions of people were subject to lockdowns, and traditional media and social media reached more people. Our study, carried out during the lockdown, asked people about their feelings and emotions and included a Positive and Negative Affect Schedule (PANAS). Here, we present the data resulting from that study, which could potentially be reused by psychologists interested in learning about the emotional effects of the COVID-19 pandemic as well as to make comparisons before and after the lockdown period in 2020.


Subject(s)
COVID-19 , Humans , Communicable Disease Control , COVID-19/epidemiology , COVID-19/psychology , Emotions , Pandemics
10.
Biotechnol J ; 18(11): e2300028, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37318800

ABSTRACT

In the biopharmaceutical industry, the use of mammalian cells to produce therapeutic proteins is becoming increasingly widespread. Monitoring of these cultures via different analysis techniques is essential to ensure a good quality product while respecting good manufacturing practice (GMP) regulations. Process Analytical Technologies (PAT) tools provide real-time measurements of the physiological state of the culture and enable process automation. Dielectric spectroscopy is a PAT that can be used to monitor the viable cell concentration (VCC) of living cells after processing raw permittivity data. Several modeling approaches exist and estimate biomass with different accuracy. The accuracy of the Cole-Cole and Maxwell Wagner's equations are studied here in the determination of the VCC and cell radius in Chinese hamster ovary (CHO) culture. A sensitivity analysis performed on the parameters entering the equations highlighted the importance of the cell specific parameters such as internal conductivity (σi ) and membrane capacitance (Cm ) in the accuracy of the estimation of VCC and cell radius. The most accurate optimization method found to improve the accuracy involves in-process adjustments of Cm and σi in the model equations with samplings from the bioreactor. This combination of offline and in situ data improved the estimation precision of the VCC by 69% compared to a purely mechanistic model without offline adjustments.


Subject(s)
Bioreactors , Dielectric Spectroscopy , Cricetinae , Animals , Dielectric Spectroscopy/methods , Cricetulus , CHO Cells , Cell Count
11.
J Hepatol ; 79(4): 1025-1036, 2023 10.
Article in English | MEDLINE | ID: mdl-37348790

ABSTRACT

BACKGROUND & AIMS: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS: The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS: In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS: Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS: Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.


Subject(s)
Liver Diseases , Neutrophils , Animals , Mice , Liver , Cell Proliferation , Epithelium
12.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066245

ABSTRACT

Background and Aims: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocytes markers and showing immature features. However, the mechanisms and the impact of hepatocyte dedifferentiation in liver disease are poorly understood. Methods: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ALD). Hepatocyte- specific overexpression or deletion of CXCR4, and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. Results: Here we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness and cancer gene programs. CXCR4 pathway was highly enriched in HB cells, and correlated with disease severity and hepatocyte dedifferentiation. In vitro , CXCR4 was associated with biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased hepatocyte specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. Conclusions: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. Lay summary: Here we describe that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis.

13.
J Hepatol ; 79(3): 728-740, 2023 09.
Article in English | MEDLINE | ID: mdl-37088308

ABSTRACT

BACKGROUND & AIMS: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood. METHODS: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. RESULTS: Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. CONCLUSIONS: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. IMPACT AND IMPLICATIONS: Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.


Subject(s)
Cellular Reprogramming , Hepatitis, Alcoholic , Animals , Mice , Hepatitis, Alcoholic/metabolism , Hepatocytes/metabolism , Inflammation/metabolism , Liver/pathology
14.
Kidney Int ; 104(1): 61-73, 2023 07.
Article in English | MEDLINE | ID: mdl-36990212

ABSTRACT

Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.


Subject(s)
Anemia , Erythropoietin , Iron Deficiencies , Renal Insufficiency, Chronic , Mice , Animals , Iron/metabolism , Erythropoiesis/genetics , Hepcidins/genetics , Hepcidins/metabolism , Disease Models, Animal , Anemia/etiology , Anemia/genetics , Erythropoietin/metabolism , Inflammation/drug therapy , Inflammation/complications , Receptors, Transferrin/genetics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics
15.
Article in English | MEDLINE | ID: mdl-36141439

ABSTRACT

INTRODUCTION: The purpose of this study was to compare and contrast the accuracy of endodontic access cavities created using an augmented reality appliance to those performed using the conventional technique. MATERIALS AND METHODS: 60 single-rooted anterior teeth were chosen for study and randomly divided between two study groups: Group A-endodontic access cavities created using an augmented reality appliance as a guide (n = 30) (AR); and Group B-endodontic access cavities performed with the manual (freehand) technique (n = 30) (MN). A 3D implant planning software was used to plan the endodontic access cavities for the AR group, with a cone-beam computed tomography (CBCT) and 3D intraoral surface scan taken preoperatively and subsequently transferred to the augmented reality device. A second CBCT scan was taken after performing the endodontic access cavities to compare the planned and performed endodontic access for accuracy. Therapeutic planning software and Student's t-test were used to analyze the cavities at the apical, coronal, and angular levels. The repeatability and reproducibility of the digital measurement technique were analyzed using Gage R&R statistical analysis. RESULTS: The paired t-test found statistically significant differences between the study groups at the coronal (p = 0.0029) and apical (p = 0.0063) levels; no statistically significant differences were found between the AR and MN groups at the angular (p = 0.6596) level. CONCLUSIONS: Augmented reality devices enable the safer and more accurate performance of endodontic access cavities when compared with the conventional freehand technique.


Subject(s)
Augmented Reality , Cone-Beam Computed Tomography , Humans , Reproducibility of Results , Software
16.
J Clin Med ; 11(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683530

ABSTRACT

The present study aims to evaluate and contrast the function of the rotational speed of NiTi alloy endodontic rotary files on how resistant they are to dynamic cyclic fatigue. Methods: A total of 150 NiTi alloy endodontic rotary files with similar geometrical design and metallurgical properties were randomly divided into study groups: Group A: 200 rpm (n = 30); Group B: 350 rpm (n = 30); Group C: 500 rpm (n = 30); Group D: reciprocating movement at 350 rpm with 120° counterclockwise and 30° clockwise motion (350 rpm+) (n = 30); and Group E: reciprocating movement at 400 rpm with 120° counterclockwise and 30° clockwise motion (400 rpm+) (n = 30). A dynamic device was designed to carry out dynamic cyclic fatigue tests using artificial root canal systems made from stainless steel with an apical diameter of 250 µm, 5 mm radius of curvature, 60° curvature angle, and 6% taper, and 20 mm in length. A Weibull statistical analysis and ANOVA test were used to analyze the results. Results: The ANOVA analysis showed differences in time to failure among all the study groups that were of statistical significance (p < 0.001). Conclusions: NiTi alloy endodontic rotary files using reciprocating movement at 350 rpm with 120° counterclockwise and 30° clockwise motion exhibit greater resistance to dynamic cyclic fatigue than files used with a reciprocating movement at 400 rpm with 120° counterclockwise and 30° clockwise motion, continuous rotational speed at 200 rpm, continuous rotational speed at 350 rpm, or continuous rotational speed at 500 rpm; it is therefore advisable to use reciprocating movements at a low speed.

17.
Blood Adv ; 6(15): 4471-4484, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35696753

ABSTRACT

Store-operated Ca2+-entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the 2 key proteins of store-operated Ca2+-entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a store-operated Ca2+-entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored on treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.


Subject(s)
Myopathies, Structural, Congenital , Thrombocytopenia , Animals , Calcium/metabolism , Mice , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Thrombocytopenia/genetics
18.
Cell Calcium ; 105: 102605, 2022 07.
Article in English | MEDLINE | ID: mdl-35636153

ABSTRACT

Gain-of-function mutations on STIM1 and ORAI1 genes are responsible for an increased store-operated calcium entry, and underlie the characteristic symptoms of three overlapping ultra-rare genetic disorders (i.e tubular aggregate myopathy, Stormorken syndrome, York platelet syndrome) that can be grouped as tubular aggregate myopathies. These mutations lead to a wide spectrum of defects, which usually include muscle weakness and cramps. Negative modulators of store-operated Ca2+-entry targeting wild-type STIM1 and ORAI1 have entered clinical trials for a different array of disorders, including pancreatitis, COVID-19, cancer, and autoimmune disorders and, while efficacy data is awaited, safety data indicates tolerability of this STIM1/ORAI1 mutations are amenable to pharmacological intervention. If this were so, given that there are no approved treatments or clinical trials ongoing for these rare disorders, it could be envisaged that these agents could also rehabilitate tubular aggregate myopathy patients. In the present contribution we characterized the Ca2+-entry patterns induced by eleven STIM1 and three ORAI1 mutations in heterologous systems or in patient-derived cells, i.e. fibroblasts and myotubes, and evaluated the effect of CIC-37 and CIC-39, two novel store-operated calcium entry modulators. Our data show that all STIM1 and ORAI1 gain-of-function mutations tested, with the possible exception of the R304Q STIM1 mutation, are amenable to inhibition, albeit with slightly different sensitivities, paving the way to the development of SOCE modulators in tubular aggregate myopathies.


Subject(s)
COVID-19 , Myopathies, Structural, Congenital , Blood Platelet Disorders , Calcium/metabolism , Dyslexia , Erythrocytes, Abnormal , Humans , Ichthyosis , Migraine Disorders , Miosis , Muscle Fatigue , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Neoplasm Proteins/genetics , ORAI1 Protein/genetics , Spleen/abnormalities , Stromal Interaction Molecule 1/genetics
19.
JHEP Rep ; 4(6): 100482, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35540106

ABSTRACT

Background & Aims: The molecular mechanisms driving the progression from early-chronic liver disease (CLD) to cirrhosis and, finally, acute-on-chronic liver failure (ACLF) are largely unknown. Our aim was to develop a protein network-based approach to investigate molecular pathways driving progression from early-CLD to ACLF. Methods: Transcriptome analysis was performed on liver biopsies from patients at different liver disease stages, including fibrosis, compensated cirrhosis, decompensated cirrhosis and ACLF, and control healthy livers. We created 9 liver-specific disease-related protein-protein interaction networks capturing key pathophysiological processes potentially related to CLD. We used these networks as a framework and performed gene set-enrichment analysis (GSEA) to identify dynamic gene profiles of disease progression. Results: Principal component analyses revealed that samples clustered according to the disease stage. GSEA of the defined processes showed an upregulation of inflammation, fibrosis and apoptosis networks throughout disease progression. Interestingly, we did not find significant gene expression differences between compensated and decompensated cirrhosis, while ACLF showed acute expression changes in all the defined liver disease-related networks. The analyses of disease progression patterns identified ascending and descending expression profiles associated with ACLF onset. Functional analyses showed that ascending profiles were associated with inflammation, fibrosis, apoptosis, senescence and carcinogenesis networks, while descending profiles were mainly related to oxidative stress and genetic factors. We confirmed by qPCR the upregulation of genes of the ascending profile and validated our findings in an independent patient cohort. Conclusion: ACLF is characterized by a specific hepatic gene expression pattern related to inflammation, fibrosis, apoptosis, senescence and carcinogenesis. Moreover, the observed profile is significantly different from that of compensated and decompensated cirrhosis, supporting the hypothesis that ACLF should be considered a distinct entity. Lay summary: By using transjugular biopsies obtained from patients at different stages of chronic liver disease, we unveil the molecular pathogenic mechanisms implicated in the progression of chronic liver disease to cirrhosis and acute-on-chronic liver failure. The most relevant finding in this study is that patients with acute-on-chronic liver failure present a specific hepatic gene expression pattern distinct from that of patients at earlier disease stages. This gene expression pattern is mostly related to inflammation, fibrosis, angiogenesis, and senescence and apoptosis pathways in the liver.

20.
Article in English | MEDLINE | ID: mdl-35328891

ABSTRACT

The present study seeks to describe a novel digital measurement technique for analyzing the wear volume of controlled memory (CM)-wire NiTi alloy endodontic reciprocating files after clinical use. MATERIAL AND METHODS: Ten CM-wire NiTi endodontic reciprocating files were randomly used in ten first upper molar teeth within four root canals. The CM-wire NiTi alloy endodontic reciprocating files were subjected to preoperative and postoperative micro-computed tomography (micro-CT) scans to obtain accurate digital imaging and communication on medicine (DICOM) digital files, which were segmented using intensity-based thresholding and an exclusive OR (XOR) logical operation (Boolean algebra logical operator) to obtain a mask of the location to localize and quantify the wear volume of the CM-wire NiTi alloy endodontic reciprocating files. Gage repeatability and reproducibility statistical analysis was applied to assess the reproducibility and repeatability of this measurement technique. RESULTS: The analysis showed a repeatability and reproducibility of 0.00% for the digital measurement technique used to analyze the wear volume of CM-wire NiTi alloy endodontic reciprocating files after clinical use. Wear was mostly identified at the tip and cutting edges of the CM-wire NiTi alloy endodontic reciprocating files. CONCLUSIONS: This novel digital measurement technique is a repeatable, reproducible, and accurate method of quantifying the wear volume of CM-wire NiTi alloy endodontic reciprocating files after clinical use.


Subject(s)
Alloys , Root Canal Preparation , Equipment Design , Reproducibility of Results , Titanium , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...