Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 29(10): 2104-9, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23201657

ABSTRACT

Reconstruction of an image (or shape or wavefront) from measurements of the derivatives of the image in two orthogonal directions is a common problem. We demonstrate how a particular reconstructor, commonly referred to as the Fried algorithm, can be used with megapixel derivative images to recover the original image. Large datasets are handled by breaking the derivative images into smaller tiles, applying the Fried algorithm and stitching the tiles back together. The performance of the algorithm is demonstrated using differential interference contrast microscopy on a known test object.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Microscopy/methods , Optical Phenomena
2.
Rev Sci Instrum ; 82(10): 103701, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22047297

ABSTRACT

The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

3.
Appl Opt ; 49(35): 6766-71, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21151234

ABSTRACT

We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.


Subject(s)
Lasers , Microscopy, Fluorescence, Multiphoton/instrumentation , Spectrometry, Fluorescence/instrumentation , Animals , Cattle , Endothelium, Vascular/ultrastructure , Lenses , Pulmonary Artery/ultrastructure
4.
Phys Rev Lett ; 90(9): 095503, 2003 Mar 07.
Article in English | MEDLINE | ID: mdl-12689234

ABSTRACT

We present near-field Raman spectroscopy and imaging of single isolated single-walled carbon nanotubes with a spatial resolution of approximately 25 nm. The near-field origin of the image contrast is confirmed by the measured dependence of the Raman scattering signal on tip-sample distance and the unique polarization properties. The method is used to study local variations in the Raman spectrum along a single single-walled carbon nanotube.

SELECTION OF CITATIONS
SEARCH DETAIL
...