Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
STAR Protoc ; 5(1): 102916, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38451820

ABSTRACT

Apoptosis-associated speck-like protein containing a c-terminal caspase activation and recruitment domain (ASC) specks are elevated in the cerebrospinal fluid (CSF) of Alzheimer's disease and related dementias (AD/ADRDs) patients. Here, we present a flow cytometry protocol to quantify ASC specks. We describe steps for fluorescently labeling ASC specks using antibody technology, visualizing with imaging flow cytometry, and gating based on physical characteristics. CSF ASC specks levels positively correlate with phosphorylated tau (Thr181) and negatively correlate with amyloid ß ratio (42/40), thus serving as a neuroinflammatory biomarker for diagnosing AD/ADRDs. For complete details on the use and execution of this protocol, please refer to Jiang et al.1.


Subject(s)
Amyloid beta-Peptides , CARD Signaling Adaptor Proteins , Humans , Flow Cytometry/methods , CARD Signaling Adaptor Proteins/metabolism , Amyloid beta-Peptides/metabolism , Inflammasomes/metabolism , Apoptosis
2.
Front Mol Neurosci ; 15: 976108, 2022.
Article in English | MEDLINE | ID: mdl-36305000

ABSTRACT

Inflammation contributes to amyloid-ß and tau pathology in Alzheimer's disease (AD). Microglia facilitate an altered immune response that includes microgliosis, upregulation of inflammasome proteins, and elevation of matrix-metalloproteinases (MMPs). Studies of cerebrospinal fluid (CSF) and blood in dementia patients show upregulation of two potential biomarkers of inflammation at the cellular level, MMP10 and apoptosis-associated speck-like protein containing a CARD (ASC). However, little is known about their relationship in the context of brain inflammation. Therefore, we stimulated microglia cultures with purified insoluble ASC speck aggregates and MMP10 to elucidate their role. We found that ASC specks altered microglia shape and stimulated the release of MMP3 and MMP10. Furthermore, MMP10 stimulated microglia released additional MMP10 along with the inflammatory cytokines, tumor-necrosis factor-α (TNFα), Interleukin 6 (IL-6), and CXCL1 CXC motif chemokine ligand 1 (CXCL1). A broad-spectrum MMP inhibitor, GM6001, prevented TNFα release. With these results, we conclude that MMP10 and ASC specks act on microglial cells to propagate inflammation.

3.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35563537

ABSTRACT

Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.


Subject(s)
COVID-19 , Stroke , Blood-Brain Barrier/metabolism , COVID-19/complications , Central Nervous System , Humans , SARS-CoV-2 , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...