Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562703

ABSTRACT

Uniform cobalt ferrite nanoparticles have been synthesized using an electrochemical synthesis method in aqueous media. Their colloidal, magnetic, and relaxometric properties have been analyzed. The novelty of this synthesis relies on the use of iron and cobalt foils as precursors, which assures the reproducibility of the iron and cobalt ratio in the structure. A stable and biocompatible targeting conjugate nanoparticle-folic acid (NP-FA) was developed that was capable of targeting FA receptor positivity in HeLa (human cervical cancer) cancer cells. The biocompatibility of NP-FA was assessed in vitro in HeLa cells using the MTT assay, and morphological analysis of the cytoskeleton was performed. A high level of NP-FA binding to HeLa cells was confirmed through qualitative in vitro targeting studies. A value of 479 Fe+Co mM-1s-1 of transverse relaxivity (r2) was obtained in colloidal suspension. In addition, in vitro analysis in HeLa cells also showed an important effect in negative T2 contrast. Therefore, the results show that NP-FA can be a potential biomaterial for use in bio medical trials, especially as a contrast agent in magnetic resonance imaging (MRI).

2.
Inorg Chem ; 58(19): 12809-12814, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31496236

ABSTRACT

Ozone oxidation has allowed the stabilization of a very high iron oxidation state in the FeSr2YCu2O7.85 cuprate, in which a long-range magnetic ordering of the high valent iron cations coexists with the superconducting interactions (magnetic ordering temperature TN = 110 K > superconducting critical temperature Tc = 70 K). The somewhat unexpected A-type AFM structure, with a µ(Fe) ∼ 2 µB magnetic saturation moment associated with the hypervalent iron sublattice, suggests an unusual low spin state for the iron cations, while the low dimensionality of the magnetic structure results in a soft switching toward ferromagnetism under small external magnetic fields. The role of the crystal structure and of the high charge concentration in the stabilization of this unusual electronic configuration for the iron cations is discussed.

3.
ACS Macro Lett ; 5(11): 1278-1282, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-35614740

ABSTRACT

The successful sunlight-photolyzed reversible addition-fragmentation chain transfer (RAFT) photopolymerization can be reversibly activated and deactivated by irradiation with sunlight in the absence of photocatalyst and photoinitiator. In the present work, the thiocarbonylthio compounds (dithiobenzoate, trithiocarbonate, and xanthate) can all be employed to carry out the polymerization under sunlight irradiation acting as an initiator, chain transfer agent, and termination agent. Moreover, it was demonstrated that the recyclable-catalyst-aided, opened-to-air, and sunlight-photolyzed RAFT (ROS-RAFT) polymerizations can be successfully carried out to fabricate precise and predictable polymers in the presence of the recyclable magnetic semiconductor nanoparticles (NPs). The oxygen tolerance is likely attributed to a specific interaction between NPs and oxygen.

4.
ACS Appl Mater Interfaces ; 6(3): 1781-7, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24428380

ABSTRACT

Transparent and conductive indium titanium oxide (ITiO) films have been obtained by electron beam physical vapour deposition with Ti content from 5 at % up to 28 at %. X-ray absorption spectroscopy techniques have been used to identify the local environment of Ti ions. Even at the lowest concentrations Ti is not incorporated into the In2O3 structure but forms clusters of a Ti-In mixed oxide that present a distorted rutile TiO2 short-range order. The optical transmittance of the annealed samples reaches 95 % and no significant variation of the gap energy (around 3.7 eV) is observed with Ti content. The electronic conductivity under light irradiation is studied evidencing a huge photo-resistance in the samples with Ti content above 22 at % reaching more than two orders of magnitude for the 26 at % Ti under illumination with few µW/cm(2) at 365 nm. Hall and conductivity results are analyzed using a model that takes into account both electron and hole carriers as well as the conductivity enhancement by carrier photogeneration. The electron carrier density decreases with Ti content while its mobility increases up to values of 1000 cm(2)/(V s). Oxygen annealed ITiO films obtained by this technique with Ti content below 10 at % have properties adequate as transparent semiconductors and those with Ti content higher than 22 at % have exceptional photoresistive properties relevant for numerous applications.

5.
J Phys Condens Matter ; 25(49): 496010, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24214918

ABSTRACT

Recent investigations in R2Fe17 intermetallic compounds have evidenced that these materials present a moderate magnetocaloric effect (MCE) near room temperature. A series of accurate magnetization measurements was carried out to show that the value of the demagnetizing factor has a significant influence on the absolute MCE value of Er2Fe17. In addition, the critical exponents determined from heat capacity and magnetization measurements allow us to describe the field dependence of the observed MCE around the Curie temperature.

6.
J Phys Condens Matter ; 23(47): 476003, 2011 11 30.
Article in English | MEDLINE | ID: mdl-22076254

ABSTRACT

Iron oxide nanoclusters have been prepared by the gas-phase aggregation technique to form thin film structures with very high exchange bias values (up to 3000 Oe at low temperatures). Composition has been analysed by x-ray absorption and Mössbauer spectroscopies in order to elucidate the actual origin of the observed magnetic behaviour. The formation of a metal-oxide core-shell arrangement to explain the observed exchange bias has to be discarded since results show no metallic iron content and the main presence of α-Fe(2)O(3). The observed weak ferromagnetism and exchange bias are in agreement with the obtained size of α-Fe(2)O(3) nanoparticles: weak ferromagnetism because of the well-known spin canting in this antiferromagnetic structure and exchange bias because of the interaction between different spin sublattice configurations promoted by the modification of iron coordination in α-Fe(2)O(3) nanoparticles. Moreover, the preparation method is proposed for tuning both magnetization and exchange bias values by modification of the preparation conditions of α-Fe(2)O(3) nanoparticles, which open new possibilities in the design of new materials with required properties.

8.
J Phys Condens Matter ; 22(21): 216005, 2010 Jun 02.
Article in English | MEDLINE | ID: mdl-21393731

ABSTRACT

Nanocrystalline Nd(2)Fe(17) powders have been obtained by means of high-energy ball milling from nearly single-phase bulk alloys produced by arc melting and high temperature homogenization annealing. The rhombohedral Th(2)Zn(17)-type crystal structure of the bulk alloy remains unaltered after the milling process, with almost unchanged values for the cell parameters. However, the severe mechanical processing induces drastic microstructural changes. A decrease of the mean crystalline size down to around 10 nm is observed, giving rise to a considerable augmentation of the disordered inter-grain boundaries. This modification of the microstructure affects the magnetic behaviour of the milled powders, although the magnetic structure remains collinear ferromagnetic. While a unique ferro-to-paramagnetic transition temperature, T(C) = 339 ± 2 K, is observed in the bulk alloy, the nanocrystalline samples exhibit a more likely distribution of T(C) values. The latter seems to be responsible for the significant broadening of the temperature range in which magneto-caloric effect is observed, and the lowering of the maximum value of the magnetic entropy change.

9.
J Phys Chem B ; 112(44): 13916-22, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18844401

ABSTRACT

The experimental phase diagram of the CBrCl3+CBr4 system has been determined by means of X-ray powder diffraction and thermal analysis techniques from 200 K to the liquid state. Before melting, the two components have the same orientationally disordered (OD) face-centered cubic phase, and solid-liquid equilibrium is explained by simple isomorphism. The application of multiple crossed isopolymorphism formalism to the low-temperature solid-solid equilibria has enabled the inference of an OD rhombohedral metastable (at normal pressure) phase for CBr4. Experimental determination of the pressure-volume-temperature and construction of the pressure-temperature phase diagrams for CBr4 reveal the existence of a high-pressure phase, the rhombohedral symmetry of which is inferred by means of the thermodynamic assessment of the experimental phase diagram and demonstrated by means of high-pressure neutron diffraction measurements. The procedure used in this work confirms the connection between the appearance of metastable phases at normal pressure and their existence at high-pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...